肠上皮中昼夜节律基因Bmal1的遗传破坏可减少结肠炎症。

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shan Hua, Ze Zhang, Zhe Zhang, Liansheng Liu, Shicheng Yu, Yanhui Xiao, Yuan Liu, Siting Wei, Ying Xu, Ye-Guang Chen
{"title":"肠上皮中昼夜节律基因Bmal1的遗传破坏可减少结肠炎症。","authors":"Shan Hua, Ze Zhang, Zhe Zhang, Liansheng Liu, Shicheng Yu, Yanhui Xiao, Yuan Liu, Siting Wei, Ying Xu, Ye-Guang Chen","doi":"10.1038/s44319-025-00464-y","DOIUrl":null,"url":null,"abstract":"<p><p>Disruption of the circadian clock is associated with the development of inflammatory bowel disease (IBD), but the underlying mechanisms remain unclear. Here, we observe that mice in the early active phase (Zeitgeber time 12, ZT12) of the circadian clock are more tolerant to dextran sodium sulfate (DSS)-induced colitis, compared to those in the early resting phase (ZT0). The expression of the circadian gene Bmal1 peaks in the early resting phase and declines in the early active phase. Bmal1 knockout in the intestinal epithelium reduces DSS-induced inflammatory symptoms. Mechanistically, BMAL1 promotes apoptosis by binding to apoptosis-related genes, including Bax, p53, and Bak1, and promotes their expression. Intriguingly, we observe circadian apoptotic rhythms in the homeostatic intestinal epithelium, while Bmal1 deletion reduces cell apoptosis. Consistently, reducing Bmal1 expression by the REV-ERBα agonist SR9009 has the best therapeutic efficacy against DSS-induced colitis at ZT0. Collectively, our data demonstrate that the Bmal1-centered circadian clock is involved in intestinal injury repair.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic disruption of the circadian gene Bmal1 in the intestinal epithelium reduces colonic inflammation.\",\"authors\":\"Shan Hua, Ze Zhang, Zhe Zhang, Liansheng Liu, Shicheng Yu, Yanhui Xiao, Yuan Liu, Siting Wei, Ying Xu, Ye-Guang Chen\",\"doi\":\"10.1038/s44319-025-00464-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disruption of the circadian clock is associated with the development of inflammatory bowel disease (IBD), but the underlying mechanisms remain unclear. Here, we observe that mice in the early active phase (Zeitgeber time 12, ZT12) of the circadian clock are more tolerant to dextran sodium sulfate (DSS)-induced colitis, compared to those in the early resting phase (ZT0). The expression of the circadian gene Bmal1 peaks in the early resting phase and declines in the early active phase. Bmal1 knockout in the intestinal epithelium reduces DSS-induced inflammatory symptoms. Mechanistically, BMAL1 promotes apoptosis by binding to apoptosis-related genes, including Bax, p53, and Bak1, and promotes their expression. Intriguingly, we observe circadian apoptotic rhythms in the homeostatic intestinal epithelium, while Bmal1 deletion reduces cell apoptosis. Consistently, reducing Bmal1 expression by the REV-ERBα agonist SR9009 has the best therapeutic efficacy against DSS-induced colitis at ZT0. Collectively, our data demonstrate that the Bmal1-centered circadian clock is involved in intestinal injury repair.</p>\",\"PeriodicalId\":11541,\"journal\":{\"name\":\"EMBO Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44319-025-00464-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00464-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物钟的破坏与炎症性肠病(IBD)的发展有关,但其潜在机制尚不清楚。在这里,我们观察到,与处于静息期(ZT0)的小鼠相比,处于生物钟早期活动期(Zeitgeber时间12,ZT12)的小鼠对葡聚糖硫酸钠(DSS)诱导的结肠炎的耐受性更强。昼夜节律基因Bmal1的表达在静息期早期达到峰值,在活跃期早期下降。肠上皮Bmal1基因敲除可减轻dss诱导的炎症症状。从机制上讲,BMAL1通过结合凋亡相关基因(包括Bax、p53和Bak1)促进细胞凋亡,并促进其表达。有趣的是,我们在肠道上皮内观察到细胞凋亡的昼夜节律,而Bmal1的缺失减少了细胞凋亡。同样,rev - erba激动剂SR9009降低Bmal1表达对ZT0时dss诱导结肠炎的治疗效果最好。总的来说,我们的数据表明,以bmal1为中心的生物钟参与了肠道损伤修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic disruption of the circadian gene Bmal1 in the intestinal epithelium reduces colonic inflammation.

Disruption of the circadian clock is associated with the development of inflammatory bowel disease (IBD), but the underlying mechanisms remain unclear. Here, we observe that mice in the early active phase (Zeitgeber time 12, ZT12) of the circadian clock are more tolerant to dextran sodium sulfate (DSS)-induced colitis, compared to those in the early resting phase (ZT0). The expression of the circadian gene Bmal1 peaks in the early resting phase and declines in the early active phase. Bmal1 knockout in the intestinal epithelium reduces DSS-induced inflammatory symptoms. Mechanistically, BMAL1 promotes apoptosis by binding to apoptosis-related genes, including Bax, p53, and Bak1, and promotes their expression. Intriguingly, we observe circadian apoptotic rhythms in the homeostatic intestinal epithelium, while Bmal1 deletion reduces cell apoptosis. Consistently, reducing Bmal1 expression by the REV-ERBα agonist SR9009 has the best therapeutic efficacy against DSS-induced colitis at ZT0. Collectively, our data demonstrate that the Bmal1-centered circadian clock is involved in intestinal injury repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信