MIRACN:残差卷积神经网络预测细胞系特异性功能调节变异。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zeyin Li, Min Wang, Songge Li, Fangyuan Shi
{"title":"MIRACN:残差卷积神经网络预测细胞系特异性功能调节变异。","authors":"Zeyin Li, Min Wang, Songge Li, Fangyuan Shi","doi":"10.1093/bib/bbaf196","DOIUrl":null,"url":null,"abstract":"<p><p>In post-genome-wide association study era, interpretation of noncoding variants remains a significant challenge due to their complexity and the limited understanding of their functions. Here, we developed MIRACN, a novel residual convolutional neural network designed to predict cell line-specific functional regulatory variants. By utilizing a substantial dataset from massively parallel reporter assays (MPRAs) and employing a multitask learning strategy, MIRACN was trained across seven distinct cell lines, attaining superior performance compared to existing methods, especially in predicting cell type specificity. Comparative evaluations on an independent MPRA test dataset demonstrated that MIRACN not only outperformed in identifying regulatory variants but also provided valuable insights into their cellular context-specific regulatory mechanisms. MIRACN is capable of not only providing scores for functional variants but also pinpointing the specific cell line in which these variants display their function. This enhancement has improved the resolution of current research on the functionality of noncoding variants and has paved the way for more precise diagnostic and therapeutic strategies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021264/pdf/","citationCount":"0","resultStr":"{\"title\":\"MIRACN: a residual convolutional neural network for predicting cell line specific functional regulatory variants.\",\"authors\":\"Zeyin Li, Min Wang, Songge Li, Fangyuan Shi\",\"doi\":\"10.1093/bib/bbaf196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In post-genome-wide association study era, interpretation of noncoding variants remains a significant challenge due to their complexity and the limited understanding of their functions. Here, we developed MIRACN, a novel residual convolutional neural network designed to predict cell line-specific functional regulatory variants. By utilizing a substantial dataset from massively parallel reporter assays (MPRAs) and employing a multitask learning strategy, MIRACN was trained across seven distinct cell lines, attaining superior performance compared to existing methods, especially in predicting cell type specificity. Comparative evaluations on an independent MPRA test dataset demonstrated that MIRACN not only outperformed in identifying regulatory variants but also provided valuable insights into their cellular context-specific regulatory mechanisms. MIRACN is capable of not only providing scores for functional variants but also pinpointing the specific cell line in which these variants display their function. This enhancement has improved the resolution of current research on the functionality of noncoding variants and has paved the way for more precise diagnostic and therapeutic strategies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021264/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf196\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf196","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在后全基因组关联研究时代,由于非编码变异的复杂性和对其功能的有限理解,非编码变异的解释仍然是一个重大挑战。在这里,我们开发了MIRACN,一种新的残差卷积神经网络,旨在预测细胞系特异性功能调节变异。通过利用大规模并行报告分析(MPRAs)的大量数据集并采用多任务学习策略,MIRACN在7种不同的细胞系中进行了训练,与现有方法相比,获得了更好的性能,特别是在预测细胞类型特异性方面。在一个独立的MPRA测试数据集上的比较评估表明,MIRACN不仅在识别调控变异方面表现出色,而且还为细胞特定环境的调控机制提供了有价值的见解。MIRACN不仅能够提供功能性变异的评分,还能够精确定位这些变异显示其功能的特定细胞系。这种增强提高了当前非编码变异功能研究的分辨率,并为更精确的诊断和治疗策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIRACN: a residual convolutional neural network for predicting cell line specific functional regulatory variants.

In post-genome-wide association study era, interpretation of noncoding variants remains a significant challenge due to their complexity and the limited understanding of their functions. Here, we developed MIRACN, a novel residual convolutional neural network designed to predict cell line-specific functional regulatory variants. By utilizing a substantial dataset from massively parallel reporter assays (MPRAs) and employing a multitask learning strategy, MIRACN was trained across seven distinct cell lines, attaining superior performance compared to existing methods, especially in predicting cell type specificity. Comparative evaluations on an independent MPRA test dataset demonstrated that MIRACN not only outperformed in identifying regulatory variants but also provided valuable insights into their cellular context-specific regulatory mechanisms. MIRACN is capable of not only providing scores for functional variants but also pinpointing the specific cell line in which these variants display their function. This enhancement has improved the resolution of current research on the functionality of noncoding variants and has paved the way for more precise diagnostic and therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信