Harvard Wai Hann Hui, Wei Xin Chan, Wilson Wen Bin Goh
{"title":"评估批效应相关缺失值对高通量生物医学数据下游分析的影响。","authors":"Harvard Wai Hann Hui, Wei Xin Chan, Wilson Wen Bin Goh","doi":"10.1093/bib/bbaf168","DOIUrl":null,"url":null,"abstract":"<p><p>Batch effect associated missing values (BEAMs) are batch-wide missingness induced from the integration of data with different coverage of biomedical features. BEAMs can present substantial challenges in data analysis. This study investigates how BEAMs impact missing value imputation (MVI) and batch effect (BE) correction algorithms (BECAs). Through simulations and analyses of real-world datasets including the Clinical Proteomic Tumour Analysis Consortium (CPTAC), we evaluated six MVI methods: K-nearest neighbors (KNN), Mean, MinProb, Singular Value Decomposition (SVD), Multivariate Imputation by Chained Equations (MICE), and Random Forest (RF), with ComBat and limma as the BECAs. We demonstrated that BEAMs strongly affect MVI performance, resulting in inaccurate imputed values, inflated significant P-values, and compromised BE correction. KNN, SVD, and RF were particularly prone to propagating random signals, resulting in false statistical confidence. While imputation with Mean and MinProb were less detrimental, artifacts were nonetheless introduced. Furthermore, the detrimental effect of BEAMs increased in parallel with its severity in the data. Our findings highlight the necessity of comprehensive assessments and tailored strategies to handle BEAMs in multi-batch datasets to ensure reliable data analysis and interpretation. Future work should investigate more advanced simulations and a variety of dedicated MVI methods to robustly address BEAMs.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of batch effect associated missing values on downstream analysis in high-throughput biomedical data.\",\"authors\":\"Harvard Wai Hann Hui, Wei Xin Chan, Wilson Wen Bin Goh\",\"doi\":\"10.1093/bib/bbaf168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Batch effect associated missing values (BEAMs) are batch-wide missingness induced from the integration of data with different coverage of biomedical features. BEAMs can present substantial challenges in data analysis. This study investigates how BEAMs impact missing value imputation (MVI) and batch effect (BE) correction algorithms (BECAs). Through simulations and analyses of real-world datasets including the Clinical Proteomic Tumour Analysis Consortium (CPTAC), we evaluated six MVI methods: K-nearest neighbors (KNN), Mean, MinProb, Singular Value Decomposition (SVD), Multivariate Imputation by Chained Equations (MICE), and Random Forest (RF), with ComBat and limma as the BECAs. We demonstrated that BEAMs strongly affect MVI performance, resulting in inaccurate imputed values, inflated significant P-values, and compromised BE correction. KNN, SVD, and RF were particularly prone to propagating random signals, resulting in false statistical confidence. While imputation with Mean and MinProb were less detrimental, artifacts were nonetheless introduced. Furthermore, the detrimental effect of BEAMs increased in parallel with its severity in the data. Our findings highlight the necessity of comprehensive assessments and tailored strategies to handle BEAMs in multi-batch datasets to ensure reliable data analysis and interpretation. Future work should investigate more advanced simulations and a variety of dedicated MVI methods to robustly address BEAMs.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf168\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf168","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Assessing the impact of batch effect associated missing values on downstream analysis in high-throughput biomedical data.
Batch effect associated missing values (BEAMs) are batch-wide missingness induced from the integration of data with different coverage of biomedical features. BEAMs can present substantial challenges in data analysis. This study investigates how BEAMs impact missing value imputation (MVI) and batch effect (BE) correction algorithms (BECAs). Through simulations and analyses of real-world datasets including the Clinical Proteomic Tumour Analysis Consortium (CPTAC), we evaluated six MVI methods: K-nearest neighbors (KNN), Mean, MinProb, Singular Value Decomposition (SVD), Multivariate Imputation by Chained Equations (MICE), and Random Forest (RF), with ComBat and limma as the BECAs. We demonstrated that BEAMs strongly affect MVI performance, resulting in inaccurate imputed values, inflated significant P-values, and compromised BE correction. KNN, SVD, and RF were particularly prone to propagating random signals, resulting in false statistical confidence. While imputation with Mean and MinProb were less detrimental, artifacts were nonetheless introduced. Furthermore, the detrimental effect of BEAMs increased in parallel with its severity in the data. Our findings highlight the necessity of comprehensive assessments and tailored strategies to handle BEAMs in multi-batch datasets to ensure reliable data analysis and interpretation. Future work should investigate more advanced simulations and a variety of dedicated MVI methods to robustly address BEAMs.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.