{"title":"印度泰米尔纳德邦天然和改良水稻土及稻米中重金属的土壤质量、风险评估及来源鉴定","authors":"Palanisamy Vasudhevan, Ganapathi Sridevi, Sandhanasamy Devanesan, Saurav Dixit, Subhav Singh, Palaniswamy Thangavel","doi":"10.1007/s10653-025-02447-3","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aims to assess the soil quality, source analysis, and risk assessment of heavy metals in native and improved rice paddies in Tamil Nadu, India. The mean values of DTPA-extractable heavy metal levels in native paddy soil were 0.06, 0.52, 2.61, 3.15, 0.48, 39.48, 97.61 mg kg<sup>-1</sup>, while improved paddy soil had values of 0.11, 1.98, 0.91, 3.21, 1.54, 20.30, 7.78 mg kg<sup>-1</sup> for Cd, Pb, Ni, Cu, Zn, Fe and Mn. These levels were below the acceptable limits set by Indian and European Union soil quality guidelines. All native rice varieties had grain Pb concentration ranging from 0.71 to 1.34 mg kg<sup>-1</sup>, but all improved rice varieties had higher levels of Cd, Pb, and Fe then prescribed limits. Nemerow pollution index (NPI) level of Ni indicated high pollution in native soil. Potential ecological risk index (RI) values of Cd indicated moderate risk in improved soil. Based on the EF and TF values, the paddy fields and rice plants are classified as 'severe enrichment' and 'accumulator' of heavy metals (Cd and Pb), respectively. The HI and THQ levels (Ni, Cd and Pb) were > 1 for both adults and children. Principal component analysis (PCA) found that PC1 eigenvalue of 5.63 (40.21%) and 6.91 (49.37%) and PC2 with 4.84 eigenvalue of 5.63 (34.56%) and 3.97 (28.37%) for native and improved soil, respectively, while cluster analysis (CA) revealed three distinct groups between the metals studied.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 5","pages":"169"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil quality, risk assessment and source identification of heavy metals in native and improved paddy soil and rice grains from Tamil Nadu, India.\",\"authors\":\"Palanisamy Vasudhevan, Ganapathi Sridevi, Sandhanasamy Devanesan, Saurav Dixit, Subhav Singh, Palaniswamy Thangavel\",\"doi\":\"10.1007/s10653-025-02447-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study aims to assess the soil quality, source analysis, and risk assessment of heavy metals in native and improved rice paddies in Tamil Nadu, India. The mean values of DTPA-extractable heavy metal levels in native paddy soil were 0.06, 0.52, 2.61, 3.15, 0.48, 39.48, 97.61 mg kg<sup>-1</sup>, while improved paddy soil had values of 0.11, 1.98, 0.91, 3.21, 1.54, 20.30, 7.78 mg kg<sup>-1</sup> for Cd, Pb, Ni, Cu, Zn, Fe and Mn. These levels were below the acceptable limits set by Indian and European Union soil quality guidelines. All native rice varieties had grain Pb concentration ranging from 0.71 to 1.34 mg kg<sup>-1</sup>, but all improved rice varieties had higher levels of Cd, Pb, and Fe then prescribed limits. Nemerow pollution index (NPI) level of Ni indicated high pollution in native soil. Potential ecological risk index (RI) values of Cd indicated moderate risk in improved soil. Based on the EF and TF values, the paddy fields and rice plants are classified as 'severe enrichment' and 'accumulator' of heavy metals (Cd and Pb), respectively. The HI and THQ levels (Ni, Cd and Pb) were > 1 for both adults and children. Principal component analysis (PCA) found that PC1 eigenvalue of 5.63 (40.21%) and 6.91 (49.37%) and PC2 with 4.84 eigenvalue of 5.63 (34.56%) and 3.97 (28.37%) for native and improved soil, respectively, while cluster analysis (CA) revealed three distinct groups between the metals studied.</p>\",\"PeriodicalId\":11759,\"journal\":{\"name\":\"Environmental Geochemistry and Health\",\"volume\":\"47 5\",\"pages\":\"169\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Geochemistry and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10653-025-02447-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02447-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Soil quality, risk assessment and source identification of heavy metals in native and improved paddy soil and rice grains from Tamil Nadu, India.
The present study aims to assess the soil quality, source analysis, and risk assessment of heavy metals in native and improved rice paddies in Tamil Nadu, India. The mean values of DTPA-extractable heavy metal levels in native paddy soil were 0.06, 0.52, 2.61, 3.15, 0.48, 39.48, 97.61 mg kg-1, while improved paddy soil had values of 0.11, 1.98, 0.91, 3.21, 1.54, 20.30, 7.78 mg kg-1 for Cd, Pb, Ni, Cu, Zn, Fe and Mn. These levels were below the acceptable limits set by Indian and European Union soil quality guidelines. All native rice varieties had grain Pb concentration ranging from 0.71 to 1.34 mg kg-1, but all improved rice varieties had higher levels of Cd, Pb, and Fe then prescribed limits. Nemerow pollution index (NPI) level of Ni indicated high pollution in native soil. Potential ecological risk index (RI) values of Cd indicated moderate risk in improved soil. Based on the EF and TF values, the paddy fields and rice plants are classified as 'severe enrichment' and 'accumulator' of heavy metals (Cd and Pb), respectively. The HI and THQ levels (Ni, Cd and Pb) were > 1 for both adults and children. Principal component analysis (PCA) found that PC1 eigenvalue of 5.63 (40.21%) and 6.91 (49.37%) and PC2 with 4.84 eigenvalue of 5.63 (34.56%) and 3.97 (28.37%) for native and improved soil, respectively, while cluster analysis (CA) revealed three distinct groups between the metals studied.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.