Jihoon E Joo, Julen Viana-Errasti, Daniel D Buchanan, Laura Valle
{"title":"腺瘤性息肉病的遗传学、基因组学及临床特征。","authors":"Jihoon E Joo, Julen Viana-Errasti, Daniel D Buchanan, Laura Valle","doi":"10.1007/s10689-025-00460-0","DOIUrl":null,"url":null,"abstract":"<p><p>Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.</p>","PeriodicalId":12336,"journal":{"name":"Familial Cancer","volume":"24 2","pages":"38"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetics, genomics and clinical features of adenomatous polyposis.\",\"authors\":\"Jihoon E Joo, Julen Viana-Errasti, Daniel D Buchanan, Laura Valle\",\"doi\":\"10.1007/s10689-025-00460-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.</p>\",\"PeriodicalId\":12336,\"journal\":{\"name\":\"Familial Cancer\",\"volume\":\"24 2\",\"pages\":\"38\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Familial Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10689-025-00460-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Familial Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10689-025-00460-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Genetics, genomics and clinical features of adenomatous polyposis.
Adenomatous polyposis syndromes are hereditary conditions characterised by the development of multiple adenomas in the gastrointestinal tract, particularly in the colon and rectum, significantly increasing the risk of colorectal cancer and, in some cases, extra-colonic malignancies. These syndromes are caused by germline pathogenic variants (PVs) in genes involved in Wnt signalling and DNA repair. The main autosomal dominant adenomatous polyposis syndromes include familial adenomatous polyposis (FAP) and polymerase proofreading-associated polyposis (PPAP), caused by germline PVs in APC and the POLE and POLD1 genes, respectively. Autosomal recessive syndromes include those caused by biallelic PVs in the DNA mismatch repair genes MLH1, MSH2, MSH6, PMS2, MSH3 and probably MLH3, and in the base excision repair genes MUTYH, NTHL1 and MBD4. This review provides an in-depth discussion of the genetic and molecular mechanisms underlying hereditary adenomatous polyposis syndromes, their clinical presentations, tumour mutational signatures, and emerging approaches for the treatment of the associated cancers. Considerations for genetic testing are described, including post-zygotic mosaicism, non-coding PVs, the interpretation of variants of unknown significance and cancer risks associated with monoallelic variants in the recessive genes. Despite advances in genetic testing and the recent identification of new adenomatous polyposis genes, many cases of multiple adenomas remain genetically unexplained. Non-genetic factors, including environmental risk factors, prior oncologic treatments, and bacterial genotoxins colonising the intestine - particularly colibactin-producing Escherichia coli - have emerged as alternative pathogenic mechanisms.
期刊介绍:
In recent years clinical cancer genetics has become increasingly important. Several events, in particular the developments in DNA-based technology, have contributed to this evolution. Clinical cancer genetics has now matured to a medical discipline which is truly multidisciplinary in which clinical and molecular geneticists work together with clinical and medical oncologists as well as with psycho-social workers.
Due to the multidisciplinary nature of clinical cancer genetics most papers are currently being published in a wide variety of journals on epidemiology, oncology and genetics. Familial Cancer provides a forum bringing these topics together focusing on the interests and needs of the clinician.
The journal mainly concentrates on clinical cancer genetics. Most major areas in the field shall be included, such as epidemiology of familial cancer, molecular analysis and diagnosis, clinical expression, treatment and prevention, counselling and the health economics of familial cancer.