利用人工智能阐明癌症中的非编码基因组。

IF 16.6 1区 医学 Q1 ONCOLOGY
Maria Del Mar Alvarez-Torres, Xi Fu, Raul Rabadan
{"title":"利用人工智能阐明癌症中的非编码基因组。","authors":"Maria Del Mar Alvarez-Torres, Xi Fu, Raul Rabadan","doi":"10.1158/0008-5472.CAN-25-0482","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the vast noncoding cancer genome requires cutting-edge, high-resolution, and accessible strategies. Artificial intelligence is revolutionizing cancer research, enabling advanced models to analyze genome regulation. This review examines illustrative examples of noncoding mutations in cancer, focusing on both key regulatory elements and risk-associated variants that remain poorly understood, and compares key artificial intelligence models developed over the last decade for identifying functional noncoding variants, predicting gene expression impacts, and uncovering cancer-associated mutations. The discussion of the goals, data requirements, features, and outcomes of the models offers practical insights to help cancer researchers integrate these technologies into their work, regardless of computational expertise. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"2368-2375"},"PeriodicalIF":16.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214880/pdf/","citationCount":"0","resultStr":"{\"title\":\"Illuminating the Noncoding Genome in Cancer Using Artificial Intelligence.\",\"authors\":\"Maria Del Mar Alvarez-Torres, Xi Fu, Raul Rabadan\",\"doi\":\"10.1158/0008-5472.CAN-25-0482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the vast noncoding cancer genome requires cutting-edge, high-resolution, and accessible strategies. Artificial intelligence is revolutionizing cancer research, enabling advanced models to analyze genome regulation. This review examines illustrative examples of noncoding mutations in cancer, focusing on both key regulatory elements and risk-associated variants that remain poorly understood, and compares key artificial intelligence models developed over the last decade for identifying functional noncoding variants, predicting gene expression impacts, and uncovering cancer-associated mutations. The discussion of the goals, data requirements, features, and outcomes of the models offers practical insights to help cancer researchers integrate these technologies into their work, regardless of computational expertise. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.</p>\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\" \",\"pages\":\"2368-2375\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12214880/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.CAN-25-0482\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-25-0482","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解巨大的非编码癌症基因组需要尖端、高分辨率和可访问的策略。人工智能(AI)正在彻底改变癌症研究,使先进的模型能够分析基因组调控。本综述研究了癌症中非编码突变的说明性例子,重点关注关键调控元件和风险相关变异,这些变异仍然知之甚少,并比较了过去十年中开发的用于识别功能性非编码变异、预测基因表达影响和发现癌症相关突变的关键人工智能模型。对模型的目标、数据需求、特征和结果的讨论提供了实用的见解,帮助癌症研究人员将这些技术整合到他们的工作中,而不考虑计算专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illuminating the Noncoding Genome in Cancer Using Artificial Intelligence.

Understanding the vast noncoding cancer genome requires cutting-edge, high-resolution, and accessible strategies. Artificial intelligence is revolutionizing cancer research, enabling advanced models to analyze genome regulation. This review examines illustrative examples of noncoding mutations in cancer, focusing on both key regulatory elements and risk-associated variants that remain poorly understood, and compares key artificial intelligence models developed over the last decade for identifying functional noncoding variants, predicting gene expression impacts, and uncovering cancer-associated mutations. The discussion of the goals, data requirements, features, and outcomes of the models offers practical insights to help cancer researchers integrate these technologies into their work, regardless of computational expertise. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信