{"title":"联合靶向BMI1和MYC消除鳞状细胞癌中的肿瘤干细胞。","authors":"Zhen Qin, Shuo Liu, Yunfei Zheng, Yujia Wang, Yiwen Chen, Xin Peng, Lingfei Jia","doi":"10.1016/j.xcrm.2025.102077","DOIUrl":null,"url":null,"abstract":"<p><p>Bmi1<sup>+</sup> tumor cells act as cancer stem cells (CSCs) driving relapse and therapy resistance in head and neck squamous cell carcinoma (HNSCC). Although BMI1 inhibitors reduce CSCs, combined cisplatin treatment targeting non-stem tumor cells is more effective in eliminating CSCs. Non-stem tumor cells may revert to CSCs post-treatment. However, in vivo evidence and underlying mechanisms remain unclear. Here, we demonstrate that BMI1 inhibitors induce temporary tumor regression followed by relapse. Lineage tracing reveals that keratin 16-marked non-stem tumor cells revert to Bmi1<sup>+</sup> CSCs, which drive compensatory tumor growth after BMI1 targeting therapy. Mechanistically, BMI1 inhibitors activate DNA damage/nuclear factor κB (NF-κB) signaling and inflammatory cytokine secretion, subsequently stimulating myelocytomatosis viral oncogene homolog (MYC) expression in non-stem tumor cells to promote the reversion process. Genetic and pharmacological inhibition of MYC synergizes with BMI1 targeting, achieving sustained CSC eradication and relapse prevention. These findings provide insights into CSCs' plasticity and suggest dual BMI1/MYC blockade as an effective HNSCC treatment strategy.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102077"},"PeriodicalIF":11.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-targeting BMI1 and MYC to eliminate cancer stem cells in squamous cell carcinoma.\",\"authors\":\"Zhen Qin, Shuo Liu, Yunfei Zheng, Yujia Wang, Yiwen Chen, Xin Peng, Lingfei Jia\",\"doi\":\"10.1016/j.xcrm.2025.102077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bmi1<sup>+</sup> tumor cells act as cancer stem cells (CSCs) driving relapse and therapy resistance in head and neck squamous cell carcinoma (HNSCC). Although BMI1 inhibitors reduce CSCs, combined cisplatin treatment targeting non-stem tumor cells is more effective in eliminating CSCs. Non-stem tumor cells may revert to CSCs post-treatment. However, in vivo evidence and underlying mechanisms remain unclear. Here, we demonstrate that BMI1 inhibitors induce temporary tumor regression followed by relapse. Lineage tracing reveals that keratin 16-marked non-stem tumor cells revert to Bmi1<sup>+</sup> CSCs, which drive compensatory tumor growth after BMI1 targeting therapy. Mechanistically, BMI1 inhibitors activate DNA damage/nuclear factor κB (NF-κB) signaling and inflammatory cytokine secretion, subsequently stimulating myelocytomatosis viral oncogene homolog (MYC) expression in non-stem tumor cells to promote the reversion process. Genetic and pharmacological inhibition of MYC synergizes with BMI1 targeting, achieving sustained CSC eradication and relapse prevention. These findings provide insights into CSCs' plasticity and suggest dual BMI1/MYC blockade as an effective HNSCC treatment strategy.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102077\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102077\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Co-targeting BMI1 and MYC to eliminate cancer stem cells in squamous cell carcinoma.
Bmi1+ tumor cells act as cancer stem cells (CSCs) driving relapse and therapy resistance in head and neck squamous cell carcinoma (HNSCC). Although BMI1 inhibitors reduce CSCs, combined cisplatin treatment targeting non-stem tumor cells is more effective in eliminating CSCs. Non-stem tumor cells may revert to CSCs post-treatment. However, in vivo evidence and underlying mechanisms remain unclear. Here, we demonstrate that BMI1 inhibitors induce temporary tumor regression followed by relapse. Lineage tracing reveals that keratin 16-marked non-stem tumor cells revert to Bmi1+ CSCs, which drive compensatory tumor growth after BMI1 targeting therapy. Mechanistically, BMI1 inhibitors activate DNA damage/nuclear factor κB (NF-κB) signaling and inflammatory cytokine secretion, subsequently stimulating myelocytomatosis viral oncogene homolog (MYC) expression in non-stem tumor cells to promote the reversion process. Genetic and pharmacological inhibition of MYC synergizes with BMI1 targeting, achieving sustained CSC eradication and relapse prevention. These findings provide insights into CSCs' plasticity and suggest dual BMI1/MYC blockade as an effective HNSCC treatment strategy.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.