Xiaoliang Yin, Xiaodong Chen, Tao Wang, Jianling Yang, Jiahui Yu, Jun Yang
{"title":"LncRNA SCARNA8通过抑制巨噬细胞efferocytosis促进动脉粥样硬化斑块不稳定。","authors":"Xiaoliang Yin, Xiaodong Chen, Tao Wang, Jianling Yang, Jiahui Yu, Jun Yang","doi":"10.1080/15592294.2025.2487317","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, findings suggest that long noncoding RNAs (lncRNAs) are closely related to the development of atherosclerosis (AS), but there is a lack of studies on the involvement of lncRNA-regulated cytosolic burial in the regulation of AS. In this study, we investigated the mechanism by which lncRNA SCARNA8 affects macrophage cell burial to regulate AS. The cytosolic burial-associated target gene regulated by lncRNA SCARNA8 was PPARG. LncRNA SCARNA8 was increased in the carotid unstable plaque group, whereas PPARG was decreased. Ox-LDL led to the up-regulation of lncRNA SCARNA8 expression and apoptosis in Raw264.7 cells in a time-, concentration-dependent manner. Knockdown of lncRNA SCARNA8 upregulated PPARG and reduced apoptosis in Raw264.7 cells. In addition, knockdown of lncRNA SCARNA8 improved the stability of atherosclerotic plaques by promoting cellular burial of Raw264.7 cells. LncRNA SCARNA8 is a key regulator of plaque vulnerability, and targeting lncRNA SCARNA8 May provide a novel means for the prevention and treatment of AS.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2487317"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077458/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA SCARNA8 promotes atherosclerotic plaque instability by inhibiting macrophage efferocytosis.\",\"authors\":\"Xiaoliang Yin, Xiaodong Chen, Tao Wang, Jianling Yang, Jiahui Yu, Jun Yang\",\"doi\":\"10.1080/15592294.2025.2487317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, findings suggest that long noncoding RNAs (lncRNAs) are closely related to the development of atherosclerosis (AS), but there is a lack of studies on the involvement of lncRNA-regulated cytosolic burial in the regulation of AS. In this study, we investigated the mechanism by which lncRNA SCARNA8 affects macrophage cell burial to regulate AS. The cytosolic burial-associated target gene regulated by lncRNA SCARNA8 was PPARG. LncRNA SCARNA8 was increased in the carotid unstable plaque group, whereas PPARG was decreased. Ox-LDL led to the up-regulation of lncRNA SCARNA8 expression and apoptosis in Raw264.7 cells in a time-, concentration-dependent manner. Knockdown of lncRNA SCARNA8 upregulated PPARG and reduced apoptosis in Raw264.7 cells. In addition, knockdown of lncRNA SCARNA8 improved the stability of atherosclerotic plaques by promoting cellular burial of Raw264.7 cells. LncRNA SCARNA8 is a key regulator of plaque vulnerability, and targeting lncRNA SCARNA8 May provide a novel means for the prevention and treatment of AS.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":\"20 1\",\"pages\":\"2487317\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2025.2487317\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2487317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
LncRNA SCARNA8 promotes atherosclerotic plaque instability by inhibiting macrophage efferocytosis.
In recent years, findings suggest that long noncoding RNAs (lncRNAs) are closely related to the development of atherosclerosis (AS), but there is a lack of studies on the involvement of lncRNA-regulated cytosolic burial in the regulation of AS. In this study, we investigated the mechanism by which lncRNA SCARNA8 affects macrophage cell burial to regulate AS. The cytosolic burial-associated target gene regulated by lncRNA SCARNA8 was PPARG. LncRNA SCARNA8 was increased in the carotid unstable plaque group, whereas PPARG was decreased. Ox-LDL led to the up-regulation of lncRNA SCARNA8 expression and apoptosis in Raw264.7 cells in a time-, concentration-dependent manner. Knockdown of lncRNA SCARNA8 upregulated PPARG and reduced apoptosis in Raw264.7 cells. In addition, knockdown of lncRNA SCARNA8 improved the stability of atherosclerotic plaques by promoting cellular burial of Raw264.7 cells. LncRNA SCARNA8 is a key regulator of plaque vulnerability, and targeting lncRNA SCARNA8 May provide a novel means for the prevention and treatment of AS.
期刊介绍:
Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed.
Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to):
DNA methylation
Nucleosome positioning and modification
Gene silencing
Imprinting
Nuclear reprogramming
Chromatin remodeling
Non-coding RNA
Non-histone chromosomal elements
Dosage compensation
Nuclear organization
Epigenetic therapy and diagnostics
Nutrition and environmental epigenetics
Cancer epigenetics
Neuroepigenetics