{"title":"一种用于摇瓶培养的新型多参数传感器:在线生物量、溶解氧和荧光监测,用于综合生物过程表征。","authors":"Lara Strehl, Anna-Lena Kuhn, Kyra Hoffmann, Marcel Mann, Jørgen Barsett Magnus","doi":"10.1002/btpr.70035","DOIUrl":null,"url":null,"abstract":"<p>Shake flasks are one of the most widely used cultivation vessels in biotechnological process development. To improve the process understanding, new technologies have been reported for online monitoring of different parameters like oxygen, pH, or biomass in the last couple of years. However, most reports address the monitoring of a single parameter per shake flask. This work evaluates the ability to measure dissolved oxygen (DO), biomass, and fluorescence in parallel with a new Multiparameter Sensor (MPS). Therefore, abiotic tests for reproducibility, sensitivity, and accuracy were performed. In biological tests, different microbial systems were used to evaluate if a wide range of applications is feasible. This work demonstrates that three different parameters: DO, biomass, and fluorescence can be monitored online, in parallel, for various biological systems. The online data obtained provide crucial process knowledge, such as the start of intracellular product formation. Abiotic and biological tests showed good reproducibility, resolution, and sensitivity to changing environmental conditions. Compared to other existing measurement systems for DO or oxygen transfer rate, similar or in the former case, more data points can be recorded, allowing a detailed overview and a better understanding of the process.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"41 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aiche.onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.70035","citationCount":"0","resultStr":"{\"title\":\"A novel multiparameter sensor for shake flask cultivations: Online biomass, dissolved oxygen, and fluorescence monitoring for comprehensive bioprocess characterization\",\"authors\":\"Lara Strehl, Anna-Lena Kuhn, Kyra Hoffmann, Marcel Mann, Jørgen Barsett Magnus\",\"doi\":\"10.1002/btpr.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shake flasks are one of the most widely used cultivation vessels in biotechnological process development. To improve the process understanding, new technologies have been reported for online monitoring of different parameters like oxygen, pH, or biomass in the last couple of years. However, most reports address the monitoring of a single parameter per shake flask. This work evaluates the ability to measure dissolved oxygen (DO), biomass, and fluorescence in parallel with a new Multiparameter Sensor (MPS). Therefore, abiotic tests for reproducibility, sensitivity, and accuracy were performed. In biological tests, different microbial systems were used to evaluate if a wide range of applications is feasible. This work demonstrates that three different parameters: DO, biomass, and fluorescence can be monitored online, in parallel, for various biological systems. The online data obtained provide crucial process knowledge, such as the start of intracellular product formation. Abiotic and biological tests showed good reproducibility, resolution, and sensitivity to changing environmental conditions. Compared to other existing measurement systems for DO or oxygen transfer rate, similar or in the former case, more data points can be recorded, allowing a detailed overview and a better understanding of the process.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aiche.onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.70035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70035\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
A novel multiparameter sensor for shake flask cultivations: Online biomass, dissolved oxygen, and fluorescence monitoring for comprehensive bioprocess characterization
Shake flasks are one of the most widely used cultivation vessels in biotechnological process development. To improve the process understanding, new technologies have been reported for online monitoring of different parameters like oxygen, pH, or biomass in the last couple of years. However, most reports address the monitoring of a single parameter per shake flask. This work evaluates the ability to measure dissolved oxygen (DO), biomass, and fluorescence in parallel with a new Multiparameter Sensor (MPS). Therefore, abiotic tests for reproducibility, sensitivity, and accuracy were performed. In biological tests, different microbial systems were used to evaluate if a wide range of applications is feasible. This work demonstrates that three different parameters: DO, biomass, and fluorescence can be monitored online, in parallel, for various biological systems. The online data obtained provide crucial process knowledge, such as the start of intracellular product formation. Abiotic and biological tests showed good reproducibility, resolution, and sensitivity to changing environmental conditions. Compared to other existing measurement systems for DO or oxygen transfer rate, similar or in the former case, more data points can be recorded, allowing a detailed overview and a better understanding of the process.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.