{"title":"PathSynergy:用于预测肝癌药物协同作用的深度学习模型。","authors":"Fengyue Zhang, Xuqi Zhao, Jinrui Wei, Lichuan Wu","doi":"10.1093/bib/bbaf192","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a major public health problem while liver cancer is the main cause of global cancer-related deaths. The previous study demonstrates that the 5-year survival rate for advanced liver cancer is only 30%. Few of the first-line targeted drugs including sorafenib and lenvatinib are available, which often develop resistance. Drug combination therapy is crucial for improving the efficacy of cancer therapy and overcoming resistance. However, traditional methods for discovering drug synergy are costly and time consuming. In this study, we developed a novel predicting model PathSynergy by integrating drug feature data, cell line data, drug-target interactions, and signaling pathways. PathSynergy combined the advantages of graph neural networks and pathway map mapping. Comparing with other baseline models, PathSynergy showed better performance in model classification, accuracy, and precision. Excitingly, six Food and Drug Administration (FDA)-approved drugs including pimecrolimus, topiramate, nandrolone_decanoate, fluticasone propionate, zanubrutinib, and levonorgestrel were predicted and validated to show synergistic effects with sorafenib or lenvatinib against liver cancer for the first time. In general, the PathSynergy model provides a new perspective to discover synergistic combinations of drugs and has broad application potential in the fields of drug discovery and personalized medicine.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021016/pdf/","citationCount":"0","resultStr":"{\"title\":\"PathSynergy: a deep learning model for predicting drug synergy in liver cancer.\",\"authors\":\"Fengyue Zhang, Xuqi Zhao, Jinrui Wei, Lichuan Wu\",\"doi\":\"10.1093/bib/bbaf192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is a major public health problem while liver cancer is the main cause of global cancer-related deaths. The previous study demonstrates that the 5-year survival rate for advanced liver cancer is only 30%. Few of the first-line targeted drugs including sorafenib and lenvatinib are available, which often develop resistance. Drug combination therapy is crucial for improving the efficacy of cancer therapy and overcoming resistance. However, traditional methods for discovering drug synergy are costly and time consuming. In this study, we developed a novel predicting model PathSynergy by integrating drug feature data, cell line data, drug-target interactions, and signaling pathways. PathSynergy combined the advantages of graph neural networks and pathway map mapping. Comparing with other baseline models, PathSynergy showed better performance in model classification, accuracy, and precision. Excitingly, six Food and Drug Administration (FDA)-approved drugs including pimecrolimus, topiramate, nandrolone_decanoate, fluticasone propionate, zanubrutinib, and levonorgestrel were predicted and validated to show synergistic effects with sorafenib or lenvatinib against liver cancer for the first time. In general, the PathSynergy model provides a new perspective to discover synergistic combinations of drugs and has broad application potential in the fields of drug discovery and personalized medicine.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf192\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf192","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PathSynergy: a deep learning model for predicting drug synergy in liver cancer.
Cancer is a major public health problem while liver cancer is the main cause of global cancer-related deaths. The previous study demonstrates that the 5-year survival rate for advanced liver cancer is only 30%. Few of the first-line targeted drugs including sorafenib and lenvatinib are available, which often develop resistance. Drug combination therapy is crucial for improving the efficacy of cancer therapy and overcoming resistance. However, traditional methods for discovering drug synergy are costly and time consuming. In this study, we developed a novel predicting model PathSynergy by integrating drug feature data, cell line data, drug-target interactions, and signaling pathways. PathSynergy combined the advantages of graph neural networks and pathway map mapping. Comparing with other baseline models, PathSynergy showed better performance in model classification, accuracy, and precision. Excitingly, six Food and Drug Administration (FDA)-approved drugs including pimecrolimus, topiramate, nandrolone_decanoate, fluticasone propionate, zanubrutinib, and levonorgestrel were predicted and validated to show synergistic effects with sorafenib or lenvatinib against liver cancer for the first time. In general, the PathSynergy model provides a new perspective to discover synergistic combinations of drugs and has broad application potential in the fields of drug discovery and personalized medicine.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.