Johannes Buchner, Roberto Sitia, Hristo L Svilenov
{"title":"了解IgM结构和生物学以设计新的抗体疗法。","authors":"Johannes Buchner, Roberto Sitia, Hristo L Svilenov","doi":"10.1007/s40259-025-00720-6","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoglobulin M (IgM) antibodies are an essential and conserved part of adaptive immunity. IgMs assemble into pentamers and hexamers that bind to antigens with high avidity. Pentamers incorporate a small protein called J-chain (JC) that is important for their transcytosis via the poly-immunoglobulin receptor (pIgR). IgM antibodies can efficiently activate complement and interact with different Fc receptors (FcμR, Fcα/μR, pIgR) that trigger distinct effector functions and biodistribution. Even if these features have made the clinical use of IgM attractive over the past decades, there are currently no approved therapeutic IgMs on the market. In this review, we summarize the recent advances in the knowledge of IgM biogenesis and structure and discuss the therapeutic opportunities of IgM over IgG arising from high avidity, target clustering, binding to distinct IgM receptors, complement activation, transcytosis, and protein engineering opportunities. In addition, we summarize possibilities and outstanding challenges in the production of therapeutic IgM, including available technologies for IgM purification. Finally, we review recent preclinical and clinical data showing that IgM outperforms IgG in various in vitro assays but still fails to pass through clinical trials successfully. Challenges remain for IgM development, such as the need for a better understanding of IgM biology to facilitate a smoother transition from the preclinic to successful clinical trials.</p>","PeriodicalId":9022,"journal":{"name":"BioDrugs","volume":"39 3","pages":"347-357"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031937/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding IgM Structure and Biology to Engineer New Antibody Therapeutics.\",\"authors\":\"Johannes Buchner, Roberto Sitia, Hristo L Svilenov\",\"doi\":\"10.1007/s40259-025-00720-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunoglobulin M (IgM) antibodies are an essential and conserved part of adaptive immunity. IgMs assemble into pentamers and hexamers that bind to antigens with high avidity. Pentamers incorporate a small protein called J-chain (JC) that is important for their transcytosis via the poly-immunoglobulin receptor (pIgR). IgM antibodies can efficiently activate complement and interact with different Fc receptors (FcμR, Fcα/μR, pIgR) that trigger distinct effector functions and biodistribution. Even if these features have made the clinical use of IgM attractive over the past decades, there are currently no approved therapeutic IgMs on the market. In this review, we summarize the recent advances in the knowledge of IgM biogenesis and structure and discuss the therapeutic opportunities of IgM over IgG arising from high avidity, target clustering, binding to distinct IgM receptors, complement activation, transcytosis, and protein engineering opportunities. In addition, we summarize possibilities and outstanding challenges in the production of therapeutic IgM, including available technologies for IgM purification. Finally, we review recent preclinical and clinical data showing that IgM outperforms IgG in various in vitro assays but still fails to pass through clinical trials successfully. Challenges remain for IgM development, such as the need for a better understanding of IgM biology to facilitate a smoother transition from the preclinic to successful clinical trials.</p>\",\"PeriodicalId\":9022,\"journal\":{\"name\":\"BioDrugs\",\"volume\":\"39 3\",\"pages\":\"347-357\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioDrugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40259-025-00720-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioDrugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40259-025-00720-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Understanding IgM Structure and Biology to Engineer New Antibody Therapeutics.
Immunoglobulin M (IgM) antibodies are an essential and conserved part of adaptive immunity. IgMs assemble into pentamers and hexamers that bind to antigens with high avidity. Pentamers incorporate a small protein called J-chain (JC) that is important for their transcytosis via the poly-immunoglobulin receptor (pIgR). IgM antibodies can efficiently activate complement and interact with different Fc receptors (FcμR, Fcα/μR, pIgR) that trigger distinct effector functions and biodistribution. Even if these features have made the clinical use of IgM attractive over the past decades, there are currently no approved therapeutic IgMs on the market. In this review, we summarize the recent advances in the knowledge of IgM biogenesis and structure and discuss the therapeutic opportunities of IgM over IgG arising from high avidity, target clustering, binding to distinct IgM receptors, complement activation, transcytosis, and protein engineering opportunities. In addition, we summarize possibilities and outstanding challenges in the production of therapeutic IgM, including available technologies for IgM purification. Finally, we review recent preclinical and clinical data showing that IgM outperforms IgG in various in vitro assays but still fails to pass through clinical trials successfully. Challenges remain for IgM development, such as the need for a better understanding of IgM biology to facilitate a smoother transition from the preclinic to successful clinical trials.
期刊介绍:
An essential resource for R&D professionals and clinicians with an interest in biologic therapies.
BioDrugs covers the development and therapeutic application of biotechnology-based pharmaceuticals and diagnostic products for the treatment of human disease.
BioDrugs offers a range of additional enhanced features designed to increase the visibility, readership and educational value of the journal’s content. Each article is accompanied by a Key Points summary, giving a time-efficient overview of the content to a wide readership. Articles may be accompanied by plain language summaries to assist patients, caregivers and others in understanding important medical advances. The journal also provides the option to include various other types of enhanced features including slide sets, videos and animations. All enhanced features are peer reviewed to the same high standard as the article itself. Peer review is conducted using Editorial Manager®, supported by a database of international experts. This database is shared with other Adis journals.