在医学研究中使用生成式人工智能工具的报告指南:GAMER声明。

IF 9 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Xufei Luo, Yih Chung Tham, Mauro Giuffrè, Robert Ranisch, Mohammad Daher, Kyle Lam, Alexander Viktor Eriksen, Che-Wei Hsu, Akihiko Ozaki, Fabio Ynoe de Moraes, Sahil Khanna, Kuan-Pin Su, Emir Begagić, Zhaoxiang Bian, Yaolong Chen, Janne Estill
{"title":"在医学研究中使用生成式人工智能工具的报告指南:GAMER声明。","authors":"Xufei Luo, Yih Chung Tham, Mauro Giuffrè, Robert Ranisch, Mohammad Daher, Kyle Lam, Alexander Viktor Eriksen, Che-Wei Hsu, Akihiko Ozaki, Fabio Ynoe de Moraes, Sahil Khanna, Kuan-Pin Su, Emir Begagić, Zhaoxiang Bian, Yaolong Chen, Janne Estill","doi":"10.1136/bmjebm-2025-113825","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Generative artificial intelligence (GAI) tools can enhance the quality and efficiency of medical research, but their improper use may result in plagiarism, academic fraud and unreliable findings. Transparent reporting of GAI use is essential, yet existing guidelines from journals and institutions are inconsistent, with no standardised principles.</p><p><strong>Design and setting: </strong>International online Delphi study.</p><p><strong>Participants: </strong>International experts in medicine and artificial intelligence.</p><p><strong>Main outcome measures: </strong>The primary outcome measure is the consensus level of the Delphi expert panel on the items of inclusion criteria for GAMER (Rreporting guideline for the use of Generative Artificial intelligence tools in MEdical Research).</p><p><strong>Results: </strong>The development process included a scoping review, two Delphi rounds and virtual meetings. 51 experts from 26 countries participated in the process (44 in the Delphi survey). The final checklist comprises nine reporting items: general declaration, GAI tool specifications, prompting techniques, tool's role in the study, declaration of new GAI model(s) developed, artificial intelligence-assisted sections in the manuscript, content verification, data privacy and impact on conclusions.</p><p><strong>Conclusion: </strong>GAMER provides universal and standardised guideline for GAI use in medical research, ensuring transparency, integrity and quality.</p>","PeriodicalId":9059,"journal":{"name":"BMJ Evidence-Based Medicine","volume":" ","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reporting guideline for the use of Generative Artificial intelligence tools in MEdical Research: the GAMER Statement.\",\"authors\":\"Xufei Luo, Yih Chung Tham, Mauro Giuffrè, Robert Ranisch, Mohammad Daher, Kyle Lam, Alexander Viktor Eriksen, Che-Wei Hsu, Akihiko Ozaki, Fabio Ynoe de Moraes, Sahil Khanna, Kuan-Pin Su, Emir Begagić, Zhaoxiang Bian, Yaolong Chen, Janne Estill\",\"doi\":\"10.1136/bmjebm-2025-113825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Generative artificial intelligence (GAI) tools can enhance the quality and efficiency of medical research, but their improper use may result in plagiarism, academic fraud and unreliable findings. Transparent reporting of GAI use is essential, yet existing guidelines from journals and institutions are inconsistent, with no standardised principles.</p><p><strong>Design and setting: </strong>International online Delphi study.</p><p><strong>Participants: </strong>International experts in medicine and artificial intelligence.</p><p><strong>Main outcome measures: </strong>The primary outcome measure is the consensus level of the Delphi expert panel on the items of inclusion criteria for GAMER (Rreporting guideline for the use of Generative Artificial intelligence tools in MEdical Research).</p><p><strong>Results: </strong>The development process included a scoping review, two Delphi rounds and virtual meetings. 51 experts from 26 countries participated in the process (44 in the Delphi survey). The final checklist comprises nine reporting items: general declaration, GAI tool specifications, prompting techniques, tool's role in the study, declaration of new GAI model(s) developed, artificial intelligence-assisted sections in the manuscript, content verification, data privacy and impact on conclusions.</p><p><strong>Conclusion: </strong>GAMER provides universal and standardised guideline for GAI use in medical research, ensuring transparency, integrity and quality.</p>\",\"PeriodicalId\":9059,\"journal\":{\"name\":\"BMJ Evidence-Based Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Evidence-Based Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjebm-2025-113825\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Evidence-Based Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjebm-2025-113825","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:生成式人工智能(GAI)工具可以提高医学研究的质量和效率,但使用不当可能导致剽窃、学术欺诈和不可靠的研究结果。透明地报告GAI的使用是至关重要的,然而来自期刊和机构的现有指南是不一致的,没有标准化的原则。设计与设置:国际在线德尔福研究。参会人员:国际医学、人工智能领域专家。主要结果测量:主要结果测量是德尔菲专家组对GAMER(在医学研究中使用生成式人工智能工具的报告指南)纳入标准项目的共识水平。结果:开发过程包括范围审查,两轮德尔菲和虚拟会议。来自26个国家的51名专家参与了这一过程(其中44人参与了德尔菲调查)。最终的清单包括九个报告项目:一般声明、GAI工具规范、提示技术、工具在研究中的作用、新GAI模型开发的声明、手稿中人工智能辅助部分、内容验证、数据隐私和对结论的影响。结论:GAMER为GAI在医学研究中的应用提供了通用和标准化的指南,保证了透明度、完整性和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reporting guideline for the use of Generative Artificial intelligence tools in MEdical Research: the GAMER Statement.

Objectives: Generative artificial intelligence (GAI) tools can enhance the quality and efficiency of medical research, but their improper use may result in plagiarism, academic fraud and unreliable findings. Transparent reporting of GAI use is essential, yet existing guidelines from journals and institutions are inconsistent, with no standardised principles.

Design and setting: International online Delphi study.

Participants: International experts in medicine and artificial intelligence.

Main outcome measures: The primary outcome measure is the consensus level of the Delphi expert panel on the items of inclusion criteria for GAMER (Rreporting guideline for the use of Generative Artificial intelligence tools in MEdical Research).

Results: The development process included a scoping review, two Delphi rounds and virtual meetings. 51 experts from 26 countries participated in the process (44 in the Delphi survey). The final checklist comprises nine reporting items: general declaration, GAI tool specifications, prompting techniques, tool's role in the study, declaration of new GAI model(s) developed, artificial intelligence-assisted sections in the manuscript, content verification, data privacy and impact on conclusions.

Conclusion: GAMER provides universal and standardised guideline for GAI use in medical research, ensuring transparency, integrity and quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMJ Evidence-Based Medicine
BMJ Evidence-Based Medicine MEDICINE, GENERAL & INTERNAL-
CiteScore
8.90
自引率
3.40%
发文量
48
期刊介绍: BMJ Evidence-Based Medicine (BMJ EBM) publishes original evidence-based research, insights and opinions on what matters for health care. We focus on the tools, methods, and concepts that are basic and central to practising evidence-based medicine and deliver relevant, trustworthy and impactful evidence. BMJ EBM is a Plan S compliant Transformative Journal and adheres to the highest possible industry standards for editorial policies and publication ethics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信