关节开放手术工具的单眼姿态估计-在野外。

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Robert Spektor , Tom Friedman , Itay Or , Gil Bolotin , Shlomi Laufer
{"title":"关节开放手术工具的单眼姿态估计-在野外。","authors":"Robert Spektor ,&nbsp;Tom Friedman ,&nbsp;Itay Or ,&nbsp;Gil Bolotin ,&nbsp;Shlomi Laufer","doi":"10.1016/j.media.2025.103618","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> a tailored pose estimation framework combining tool detection with pose and articulation estimation; and <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103618"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monocular pose estimation of articulated open surgery tools - in the wild\",\"authors\":\"Robert Spektor ,&nbsp;Tom Friedman ,&nbsp;Itay Or ,&nbsp;Gil Bolotin ,&nbsp;Shlomi Laufer\",\"doi\":\"10.1016/j.media.2025.103618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: <span><math><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></math></span> synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; <span><math><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></math></span> a tailored pose estimation framework combining tool detection with pose and articulation estimation; and <span><math><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></math></span> a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"103 \",\"pages\":\"Article 103618\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525001653\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001653","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一个框架,用于开放手术中手术器械的单眼6D姿态估计,解决诸如物体关节,镜面,闭塞和合成到真实域的适应等挑战。提出的方法包括三个主要组成部分:(1)合成数据生成管道,其中包含手术工具的三维扫描与关节索具和基于物理的渲染;(2)结合工具检测与姿态和关节估计的定制姿态估计框架;(3)采用自动生成伪标签的领域自适应方法,对合成的和真实的无标注视频数据进行训练策略。对开放手术的真实数据进行的评估表明,所提出的框架具有良好的性能和现实世界的适用性,突出了其集成到医疗增强现实和机器人系统中的潜力。该方法消除了对实际手术数据进行大量手工注释的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular pose estimation of articulated open surgery tools - in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: (1) synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; (2) a tailored pose estimation framework combining tool detection with pose and articulation estimation; and (3) a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信