{"title":"肌萎缩性侧索硬化症的代谢失调:印度三级保健中心基于1H核磁共振代谢组学的见解。","authors":"Priyanka Gautam, Rahul Yadav, Ranjeet Kumar Vishwakarma, Abhishek Pathak, Chandan Singh","doi":"10.1007/s11011-025-01616-8","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor neuron loss, leading to severe physical impairment and mortality. Despite available treatments like Riluzole and Edaravone, their limited efficacy highlights the need for improved understanding of ALS pathology. This study has explored metabolic alterations in North Indian ALS patients using <sup>1</sup>H Nuclear Magnetic Resonance (NMR)-based metabolomics. A case-control study, involving 45 ALS patients and 30 healthy controls (HCs) was performed. Serum samples were analyzed using 600-MHz NMR spectrometer, revealing significant metabolic differences between ALS and HC groups. Multivariate analyses identified nine dysregulated metabolites-pyruvate, glutamine, histidine, isoleucine, leucine, imidazole, arginine, creatinine, and choline-with ROC analysis showing isoleucine as a promising biomarker (AUC 83%). Pathway enrichment analysis highlighted disruptions in key metabolic pathways, including the Glucose-Alanine Cycle, Urea Cycle, Ammonia Recycling, and the Warburg Effect, suggesting potential links to neuroinflammatory and mitochondrial dysfunction in ALS pathogenesis. This pilot study provides insight into ALS-specific metabolic alterations in Indian cohort and demonstrates the potential of these metabolites as diagnostic biomarkers. Our findings identify potential biomarkers that require validation in larger, multi-centric cohorts to support diagnosis, prognosis, and improved management of ALS.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 5","pages":"196"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic dysregulation in amyotrophic lateral sclerosis: insights from <sup>1</sup>H NMR-based metabolomics in a tertiary care center in India.\",\"authors\":\"Priyanka Gautam, Rahul Yadav, Ranjeet Kumar Vishwakarma, Abhishek Pathak, Chandan Singh\",\"doi\":\"10.1007/s11011-025-01616-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor neuron loss, leading to severe physical impairment and mortality. Despite available treatments like Riluzole and Edaravone, their limited efficacy highlights the need for improved understanding of ALS pathology. This study has explored metabolic alterations in North Indian ALS patients using <sup>1</sup>H Nuclear Magnetic Resonance (NMR)-based metabolomics. A case-control study, involving 45 ALS patients and 30 healthy controls (HCs) was performed. Serum samples were analyzed using 600-MHz NMR spectrometer, revealing significant metabolic differences between ALS and HC groups. Multivariate analyses identified nine dysregulated metabolites-pyruvate, glutamine, histidine, isoleucine, leucine, imidazole, arginine, creatinine, and choline-with ROC analysis showing isoleucine as a promising biomarker (AUC 83%). Pathway enrichment analysis highlighted disruptions in key metabolic pathways, including the Glucose-Alanine Cycle, Urea Cycle, Ammonia Recycling, and the Warburg Effect, suggesting potential links to neuroinflammatory and mitochondrial dysfunction in ALS pathogenesis. This pilot study provides insight into ALS-specific metabolic alterations in Indian cohort and demonstrates the potential of these metabolites as diagnostic biomarkers. Our findings identify potential biomarkers that require validation in larger, multi-centric cohorts to support diagnosis, prognosis, and improved management of ALS.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 5\",\"pages\":\"196\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01616-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01616-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Metabolic dysregulation in amyotrophic lateral sclerosis: insights from 1H NMR-based metabolomics in a tertiary care center in India.
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor neuron loss, leading to severe physical impairment and mortality. Despite available treatments like Riluzole and Edaravone, their limited efficacy highlights the need for improved understanding of ALS pathology. This study has explored metabolic alterations in North Indian ALS patients using 1H Nuclear Magnetic Resonance (NMR)-based metabolomics. A case-control study, involving 45 ALS patients and 30 healthy controls (HCs) was performed. Serum samples were analyzed using 600-MHz NMR spectrometer, revealing significant metabolic differences between ALS and HC groups. Multivariate analyses identified nine dysregulated metabolites-pyruvate, glutamine, histidine, isoleucine, leucine, imidazole, arginine, creatinine, and choline-with ROC analysis showing isoleucine as a promising biomarker (AUC 83%). Pathway enrichment analysis highlighted disruptions in key metabolic pathways, including the Glucose-Alanine Cycle, Urea Cycle, Ammonia Recycling, and the Warburg Effect, suggesting potential links to neuroinflammatory and mitochondrial dysfunction in ALS pathogenesis. This pilot study provides insight into ALS-specific metabolic alterations in Indian cohort and demonstrates the potential of these metabolites as diagnostic biomarkers. Our findings identify potential biomarkers that require validation in larger, multi-centric cohorts to support diagnosis, prognosis, and improved management of ALS.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.