{"title":"采用新型随机孔径掩蔽和数据混合策略增强单单元压缩超声成像。","authors":"Pezhman Pasyar, Zahra Montazeriani, Ehsan Roodgar Amoli, Bahador Makkiabadi","doi":"10.1121/10.0036438","DOIUrl":null,"url":null,"abstract":"<p><p>As ultrasound techniques continue to evolve, the integration of compressed sensing technology has emerged as a pivotal advancement, offering a transformative impact on the landscape of ultrasound imaging. A key attribute of compressed sensing lies in its ability to facilitate a substantial reduction in both machinery size and power consumption. This technological synergy not only addresses crucial practical considerations in the design of ultrasound systems but also opens avenues for enhanced portability and energy efficiency. This study develops a model and introduces an aperture mask with a mixing scheme for compressive ultrasound imaging employing a single transducer, aiming to minimize the loss of information and scrutinize the variables influencing image quality while facilitating computationally efficient system simulation. A detailed procedural guide is presented for generating synthetic data, accompanied by qualitative and quantitative analyses using several sparse recovery methods under different experimental conditions. This study's analysis reveals that the proposed strategy achieves improved metrics, offering advantages for sparse recovery. Specifically, the finite element results demonstrate approximately a 10% improvement in the condition number of the measurement matrix, reflecting enhanced numerical stability.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 4","pages":"2994-3002"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing single-element compressive ultrasound imaging through novel random aperture masking and data mixing strategy.\",\"authors\":\"Pezhman Pasyar, Zahra Montazeriani, Ehsan Roodgar Amoli, Bahador Makkiabadi\",\"doi\":\"10.1121/10.0036438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As ultrasound techniques continue to evolve, the integration of compressed sensing technology has emerged as a pivotal advancement, offering a transformative impact on the landscape of ultrasound imaging. A key attribute of compressed sensing lies in its ability to facilitate a substantial reduction in both machinery size and power consumption. This technological synergy not only addresses crucial practical considerations in the design of ultrasound systems but also opens avenues for enhanced portability and energy efficiency. This study develops a model and introduces an aperture mask with a mixing scheme for compressive ultrasound imaging employing a single transducer, aiming to minimize the loss of information and scrutinize the variables influencing image quality while facilitating computationally efficient system simulation. A detailed procedural guide is presented for generating synthetic data, accompanied by qualitative and quantitative analyses using several sparse recovery methods under different experimental conditions. This study's analysis reveals that the proposed strategy achieves improved metrics, offering advantages for sparse recovery. Specifically, the finite element results demonstrate approximately a 10% improvement in the condition number of the measurement matrix, reflecting enhanced numerical stability.</p>\",\"PeriodicalId\":17168,\"journal\":{\"name\":\"Journal of the Acoustical Society of America\",\"volume\":\"157 4\",\"pages\":\"2994-3002\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Acoustical Society of America\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1121/10.0036438\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0036438","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Enhancing single-element compressive ultrasound imaging through novel random aperture masking and data mixing strategy.
As ultrasound techniques continue to evolve, the integration of compressed sensing technology has emerged as a pivotal advancement, offering a transformative impact on the landscape of ultrasound imaging. A key attribute of compressed sensing lies in its ability to facilitate a substantial reduction in both machinery size and power consumption. This technological synergy not only addresses crucial practical considerations in the design of ultrasound systems but also opens avenues for enhanced portability and energy efficiency. This study develops a model and introduces an aperture mask with a mixing scheme for compressive ultrasound imaging employing a single transducer, aiming to minimize the loss of information and scrutinize the variables influencing image quality while facilitating computationally efficient system simulation. A detailed procedural guide is presented for generating synthetic data, accompanied by qualitative and quantitative analyses using several sparse recovery methods under different experimental conditions. This study's analysis reveals that the proposed strategy achieves improved metrics, offering advantages for sparse recovery. Specifically, the finite element results demonstrate approximately a 10% improvement in the condition number of the measurement matrix, reflecting enhanced numerical stability.
期刊介绍:
Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.