实现荧光团偶联单克隆抗体饱和的工作流程,用于生物标志物表达的稳健比较。

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Natalie Smith, Helen McGuire, Barbara Fazekas de St Groth
{"title":"实现荧光团偶联单克隆抗体饱和的工作流程,用于生物标志物表达的稳健比较。","authors":"Natalie Smith, Helen McGuire, Barbara Fazekas de St Groth","doi":"10.1002/cyto.a.24938","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody titration is an important step in every cytometric workflow, with the goal being to determine antibody concentrations that ensure highly reproducible results. When aiming to compare antigen expression between samples using mean or median fluorescence intensity (MFI), reagents should be used at a saturating concentration so that unavoidable variations in staining conditions do not affect the fluorescence signal. The recommended concentrations of commercially available fluorophore-labeled monoclonal antibodies (mAbs) may not achieve plateau staining, and their saturating concentration may be too high to be experimentally useful. To address these common concerns, we present a novel method to achieve saturation of fluorophore-conjugated mAbs, by 'spiking-in' unlabelled antibody of the same clone. Here, we demonstrate the application of this workflow to human anti-CD3 (clone OKT3, mouse IgG2a) and anti-TCRαβ (clone IP26, mouse IgG1), two mAbs that do not achieve saturation at 2-fold above their commercially recommended concentrations. First, the saturating concentration of unlabelled (purified) OKT3 and IP26 was determined by detection with a fluorophore-labeled anti-mouse IgG (H + L) secondary antibody. Titration curves of unlabelled and labeled mAbs were compared for each clone to determine whether labeling had resulted in any loss in binding activity. Unlabelled antibody was then 'spiked' into the labeled antibody at varying ratios, and those that achieved saturation while maintaining an adequate fluorescence signal were identified. We demonstrate that antibody saturation can be achieved with an optimized mixture of labeled and unlabelled antibody, while maintaining a clear signal from the fluorophore. While this workflow has only been applied to OKT3 and IP26, it has potential applicability for any antibody clone for which both labeled and unlabelled preparations are available. This method has significance for robust comparison of biomarker expression when fluorophore labeled reagents do not reach saturation under standard staining conditions.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Workflow to Achieve Saturation of Fluorophore-Conjugated Monoclonal Antibodies for Robust Comparison of Biomarker Expression.\",\"authors\":\"Natalie Smith, Helen McGuire, Barbara Fazekas de St Groth\",\"doi\":\"10.1002/cyto.a.24938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibody titration is an important step in every cytometric workflow, with the goal being to determine antibody concentrations that ensure highly reproducible results. When aiming to compare antigen expression between samples using mean or median fluorescence intensity (MFI), reagents should be used at a saturating concentration so that unavoidable variations in staining conditions do not affect the fluorescence signal. The recommended concentrations of commercially available fluorophore-labeled monoclonal antibodies (mAbs) may not achieve plateau staining, and their saturating concentration may be too high to be experimentally useful. To address these common concerns, we present a novel method to achieve saturation of fluorophore-conjugated mAbs, by 'spiking-in' unlabelled antibody of the same clone. Here, we demonstrate the application of this workflow to human anti-CD3 (clone OKT3, mouse IgG2a) and anti-TCRαβ (clone IP26, mouse IgG1), two mAbs that do not achieve saturation at 2-fold above their commercially recommended concentrations. First, the saturating concentration of unlabelled (purified) OKT3 and IP26 was determined by detection with a fluorophore-labeled anti-mouse IgG (H + L) secondary antibody. Titration curves of unlabelled and labeled mAbs were compared for each clone to determine whether labeling had resulted in any loss in binding activity. Unlabelled antibody was then 'spiked' into the labeled antibody at varying ratios, and those that achieved saturation while maintaining an adequate fluorescence signal were identified. We demonstrate that antibody saturation can be achieved with an optimized mixture of labeled and unlabelled antibody, while maintaining a clear signal from the fluorophore. While this workflow has only been applied to OKT3 and IP26, it has potential applicability for any antibody clone for which both labeled and unlabelled preparations are available. This method has significance for robust comparison of biomarker expression when fluorophore labeled reagents do not reach saturation under standard staining conditions.</p>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cyto.a.24938\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24938","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

抗体滴定是每个细胞分析工作流程中的重要步骤,其目标是确定抗体浓度,以确保高度可重复的结果。当使用平均或中位数荧光强度(MFI)比较样品之间抗原表达时,应使用饱和浓度的试剂,以免染色条件不可避免的变化影响荧光信号。市售荧光团标记单克隆抗体(mab)的推荐浓度可能无法达到平台染色,其饱和浓度可能过高而无法在实验中使用。为了解决这些共同的问题,我们提出了一种新的方法来实现饱和的荧光基团偶联单克隆抗体,通过“刺入”相同克隆的未标记抗体。在这里,我们展示了该工作流程在人类抗cd3(克隆OKT3,小鼠IgG2a)和抗tcr αβ(克隆IP26,小鼠IgG1)上的应用,这两种单克隆抗体在其商业推荐浓度的2倍以上无法达到饱和。首先,用荧光团标记的抗小鼠IgG (H + L)二抗检测未标记(纯化)OKT3和IP26的饱和浓度。比较每个克隆未标记和标记单克隆抗体的滴定曲线,以确定标记是否导致结合活性的丧失。然后将未标记的抗体以不同的比例“加标”到标记的抗体中,并鉴定那些在保持足够荧光信号的情况下达到饱和的抗体。我们证明抗体饱和可以通过标记和未标记抗体的优化混合物来实现,同时保持来自荧光团的清晰信号。虽然该工作流程仅应用于OKT3和IP26,但它具有潜在的适用性,可用于任何标记和未标记制备的抗体克隆。当荧光标记试剂在标准染色条件下未达到饱和时,该方法对生物标志物表达的稳健比较具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Workflow to Achieve Saturation of Fluorophore-Conjugated Monoclonal Antibodies for Robust Comparison of Biomarker Expression.

Antibody titration is an important step in every cytometric workflow, with the goal being to determine antibody concentrations that ensure highly reproducible results. When aiming to compare antigen expression between samples using mean or median fluorescence intensity (MFI), reagents should be used at a saturating concentration so that unavoidable variations in staining conditions do not affect the fluorescence signal. The recommended concentrations of commercially available fluorophore-labeled monoclonal antibodies (mAbs) may not achieve plateau staining, and their saturating concentration may be too high to be experimentally useful. To address these common concerns, we present a novel method to achieve saturation of fluorophore-conjugated mAbs, by 'spiking-in' unlabelled antibody of the same clone. Here, we demonstrate the application of this workflow to human anti-CD3 (clone OKT3, mouse IgG2a) and anti-TCRαβ (clone IP26, mouse IgG1), two mAbs that do not achieve saturation at 2-fold above their commercially recommended concentrations. First, the saturating concentration of unlabelled (purified) OKT3 and IP26 was determined by detection with a fluorophore-labeled anti-mouse IgG (H + L) secondary antibody. Titration curves of unlabelled and labeled mAbs were compared for each clone to determine whether labeling had resulted in any loss in binding activity. Unlabelled antibody was then 'spiked' into the labeled antibody at varying ratios, and those that achieved saturation while maintaining an adequate fluorescence signal were identified. We demonstrate that antibody saturation can be achieved with an optimized mixture of labeled and unlabelled antibody, while maintaining a clear signal from the fluorophore. While this workflow has only been applied to OKT3 and IP26, it has potential applicability for any antibody clone for which both labeled and unlabelled preparations are available. This method has significance for robust comparison of biomarker expression when fluorophore labeled reagents do not reach saturation under standard staining conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信