用于癌症治疗的金属配位聚合物纳米颗粒。

IF 5.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhengzheng Zhang, Isra Rana, Jutaek Nam
{"title":"用于癌症治疗的金属配位聚合物纳米颗粒。","authors":"Zhengzheng Zhang, Isra Rana, Jutaek Nam","doi":"10.1042/EBC20253012","DOIUrl":null,"url":null,"abstract":"<p><p>Metal ions are essential elements in biological processes and immune homeostasis. They can regulate cancer cell death through multiple distinct molecular pathways and stimulate immune cells implicated in antitumor immune responses, suggesting opportunities to design novel metal ion-based cancer therapies. However, their small size and high charge density result in poor target cell uptake, uncontrolled biodistribution, and rapid clearance from the body, reducing therapeutic efficacy and increasing potential off-target toxicity. Metal coordination polymer nanoparticles (MCP NPs) are nanoscale polymer networks composed of metal ions and organic ligands linked via noncovalent coordination interactions. MCP NPs offer a promising nanoplatform for reshaping metal ions into more drug-like formulations, improving their in vivo pharmacological performance and therapeutic index for cancer therapy applications. This review provides a comprehensive overview of the inherent biological functions of metal ions in cancer therapy, showcasing examples of MCP NP systems designed for preclinical cancer therapy applications where drug delivery principles play a critical role in enhancing therapeutic outcomes. MCP NPs offer versatile metal ion engineering approaches using selected metal ions, various organic ligands, and functional payloads, enabling on-demand nano-drug designs that can significantly improve therapeutic efficacy and reduce side effects for effective cancer therapy.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":"69 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204019/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metal coordination polymer nanoparticles for cancer therapy.\",\"authors\":\"Zhengzheng Zhang, Isra Rana, Jutaek Nam\",\"doi\":\"10.1042/EBC20253012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal ions are essential elements in biological processes and immune homeostasis. They can regulate cancer cell death through multiple distinct molecular pathways and stimulate immune cells implicated in antitumor immune responses, suggesting opportunities to design novel metal ion-based cancer therapies. However, their small size and high charge density result in poor target cell uptake, uncontrolled biodistribution, and rapid clearance from the body, reducing therapeutic efficacy and increasing potential off-target toxicity. Metal coordination polymer nanoparticles (MCP NPs) are nanoscale polymer networks composed of metal ions and organic ligands linked via noncovalent coordination interactions. MCP NPs offer a promising nanoplatform for reshaping metal ions into more drug-like formulations, improving their in vivo pharmacological performance and therapeutic index for cancer therapy applications. This review provides a comprehensive overview of the inherent biological functions of metal ions in cancer therapy, showcasing examples of MCP NP systems designed for preclinical cancer therapy applications where drug delivery principles play a critical role in enhancing therapeutic outcomes. MCP NPs offer versatile metal ion engineering approaches using selected metal ions, various organic ligands, and functional payloads, enabling on-demand nano-drug designs that can significantly improve therapeutic efficacy and reduce side effects for effective cancer therapy.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\"69 2\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204019/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20253012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20253012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

金属离子是生物过程和免疫稳态中必不可少的元素。它们可以通过多种不同的分子途径调节癌细胞死亡,并刺激与抗肿瘤免疫反应有关的免疫细胞,这为设计新型金属离子基癌症疗法提供了机会。然而,它们的小尺寸和高电荷密度导致靶细胞摄取不良,生物分布不受控制,从体内清除迅速,降低了治疗效果,增加了潜在的脱靶毒性。金属配位聚合物纳米粒子是由金属离子和有机配体通过非共价配位相互作用连接而成的纳米级聚合物网络。MCP NPs提供了一个有前途的纳米平台,可以将金属离子重塑成更像药物的配方,提高它们在体内的药理学性能和治疗指数,用于癌症治疗应用。本文综述了金属离子在癌症治疗中固有的生物学功能,展示了用于临床前癌症治疗应用的MCP - NP系统的例子,其中药物输送原则在提高治疗效果方面起着关键作用。MCP NPs提供了多种金属离子工程方法,使用选定的金属离子、各种有机配体和功能有效载荷,使按需纳米药物设计能够显著提高治疗效果,减少副作用,从而有效治疗癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal coordination polymer nanoparticles for cancer therapy.

Metal ions are essential elements in biological processes and immune homeostasis. They can regulate cancer cell death through multiple distinct molecular pathways and stimulate immune cells implicated in antitumor immune responses, suggesting opportunities to design novel metal ion-based cancer therapies. However, their small size and high charge density result in poor target cell uptake, uncontrolled biodistribution, and rapid clearance from the body, reducing therapeutic efficacy and increasing potential off-target toxicity. Metal coordination polymer nanoparticles (MCP NPs) are nanoscale polymer networks composed of metal ions and organic ligands linked via noncovalent coordination interactions. MCP NPs offer a promising nanoplatform for reshaping metal ions into more drug-like formulations, improving their in vivo pharmacological performance and therapeutic index for cancer therapy applications. This review provides a comprehensive overview of the inherent biological functions of metal ions in cancer therapy, showcasing examples of MCP NP systems designed for preclinical cancer therapy applications where drug delivery principles play a critical role in enhancing therapeutic outcomes. MCP NPs offer versatile metal ion engineering approaches using selected metal ions, various organic ligands, and functional payloads, enabling on-demand nano-drug designs that can significantly improve therapeutic efficacy and reduce side effects for effective cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Essays in biochemistry
Essays in biochemistry 生物-生化与分子生物学
CiteScore
10.50
自引率
0.00%
发文量
105
审稿时长
>12 weeks
期刊介绍: Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic. Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points. Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place. Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信