计算混沌氢周期轨道的经典逃逸率。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0237613
Ethan T Custodio, Sulimon Sattari, Kevin A Mitchell
{"title":"计算混沌氢周期轨道的经典逃逸率。","authors":"Ethan T Custodio, Sulimon Sattari, Kevin A Mitchell","doi":"10.1063/5.0237613","DOIUrl":null,"url":null,"abstract":"<p><p>When placed in parallel magnetic and electric fields, the electron trajectories of a classical hydrogen atom are chaotic. The classical escape rate of such a system can be computed with classical trajectory Monte Carlo techniques, but these computations require enormous numbers of trajectories, provide little understanding of the dynamical mechanisms involved, and must be completely rerun for any change of system parameters, no matter how small. We demonstrate an alternative technique to classical trajectory Monte Carlo computations based on classical periodic orbit theory. In this technique, escape rates are computed from a relatively modest number (a few thousand) of periodic orbits of the system. One only needs the orbits' periods and stability eigenvalues. A major advantage of this approach is that one does not need to repeat the entire analysis from scratch as system parameters are varied; one can numerically continue the periodic orbits instead. We demonstrate the periodic orbit technique for the ionization of a hydrogen atom in applied parallel electric and magnetic fields. Using fundamental theories of phase space geometry, we also show how to generate nontrivial symbolic dynamics for acquiring periodic orbits in physical systems. A detailed analysis of heteroclinic tangles and how they relate to bifurcations in periodic orbits is also presented.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing classical escape rates from periodic orbits in chaotic hydrogen.\",\"authors\":\"Ethan T Custodio, Sulimon Sattari, Kevin A Mitchell\",\"doi\":\"10.1063/5.0237613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When placed in parallel magnetic and electric fields, the electron trajectories of a classical hydrogen atom are chaotic. The classical escape rate of such a system can be computed with classical trajectory Monte Carlo techniques, but these computations require enormous numbers of trajectories, provide little understanding of the dynamical mechanisms involved, and must be completely rerun for any change of system parameters, no matter how small. We demonstrate an alternative technique to classical trajectory Monte Carlo computations based on classical periodic orbit theory. In this technique, escape rates are computed from a relatively modest number (a few thousand) of periodic orbits of the system. One only needs the orbits' periods and stability eigenvalues. A major advantage of this approach is that one does not need to repeat the entire analysis from scratch as system parameters are varied; one can numerically continue the periodic orbits instead. We demonstrate the periodic orbit technique for the ionization of a hydrogen atom in applied parallel electric and magnetic fields. Using fundamental theories of phase space geometry, we also show how to generate nontrivial symbolic dynamics for acquiring periodic orbits in physical systems. A detailed analysis of heteroclinic tangles and how they relate to bifurcations in periodic orbits is also presented.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0237613\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0237613","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

当置于平行磁场和电场中时,经典氢原子的电子轨迹是混沌的。这种系统的经典逃逸率可以用经典的轨迹蒙特卡罗技术来计算,但这些计算需要大量的轨迹,对所涉及的动力学机制的理解很少,并且对于系统参数的任何变化,无论多么小,都必须完全重新运行。我们提出了一种基于经典周期轨道理论的经典轨迹蒙特卡罗计算的替代方法。在这种技术中,逃逸率是从相对有限的(几千个)系统周期轨道中计算出来的。我们只需要轨道的周期和稳定性特征值。这种方法的一个主要优点是,当系统参数变化时,不需要从头开始重复整个分析;我们可以用数值方法来延续周期轨道。我们演示了在平行电场和磁场作用下氢原子电离的周期轨道技术。利用相空间几何的基本理论,我们还展示了如何生成非平凡的符号动力学来获取物理系统中的周期轨道。本文还详细分析了异斜缠结及其与周期轨道分岔的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing classical escape rates from periodic orbits in chaotic hydrogen.

When placed in parallel magnetic and electric fields, the electron trajectories of a classical hydrogen atom are chaotic. The classical escape rate of such a system can be computed with classical trajectory Monte Carlo techniques, but these computations require enormous numbers of trajectories, provide little understanding of the dynamical mechanisms involved, and must be completely rerun for any change of system parameters, no matter how small. We demonstrate an alternative technique to classical trajectory Monte Carlo computations based on classical periodic orbit theory. In this technique, escape rates are computed from a relatively modest number (a few thousand) of periodic orbits of the system. One only needs the orbits' periods and stability eigenvalues. A major advantage of this approach is that one does not need to repeat the entire analysis from scratch as system parameters are varied; one can numerically continue the periodic orbits instead. We demonstrate the periodic orbit technique for the ionization of a hydrogen atom in applied parallel electric and magnetic fields. Using fundamental theories of phase space geometry, we also show how to generate nontrivial symbolic dynamics for acquiring periodic orbits in physical systems. A detailed analysis of heteroclinic tangles and how they relate to bifurcations in periodic orbits is also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信