Atsushi Sakamoto, Alyssa Grogan, Rika Kawakami, Alexandra Finn, Palak Shah, Diya Nair, Krish Batra, Caroline Bailen, Mirai Sakamoto, Renu Virmani, Aloke V Finn
{"title":"血红蛋白刺激的巨噬细胞和斑块内出血在血管疾病发展中的作用。","authors":"Atsushi Sakamoto, Alyssa Grogan, Rika Kawakami, Alexandra Finn, Palak Shah, Diya Nair, Krish Batra, Caroline Bailen, Mirai Sakamoto, Renu Virmani, Aloke V Finn","doi":"10.1161/ATVBAHA.125.321439","DOIUrl":null,"url":null,"abstract":"<p><p>Intraplaque hemorrhage plays a critical role in the life of advancing atherosclerotic plaques, not only by triggering an acute increase in lesion size but also by attracting macrophages to the site. Lysis of erythrocytes in these areas is thought to be caused by oxidative stress, which induces the release of free Hb (hemoglobin), which is quickly bound by haptoglobin to form Hb-haptoglobin complexes. Macrophages are the only cells in the body capable of scavenging these complexes through the CD (cluster of differentiation) 163 scavenger receptor, which mediates Hb-haptoglobin ingestion, driving their differentiation. Emerging data suggest that these Hb-stimulated macrophages play an essential role in responding to intraplaque hemorrhage through mediating iron metabolism and influencing other cell types, including endothelial and smooth muscle cells. This review focuses on the role of Hb-stimulated macrophages in promoting atherogenesis through their effects on (1) endothelial activation, neoangiogenesis, and vascular permeability; (2) endothelial-to-mesenchymal cell transition and subsequent apoptosis; and (3) the prevention of smooth muscle cell osteogenic transformation and calcification. These functions may also be relevant to other vascular diseases where erythrocyte accumulation drives the formation of Hb-stimulated macrophages, which is a fundamental response to hemorrhage no matter the clinical setting.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"1021-1030"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Hemoglobin-Stimulated Macrophages and Intraplaque Hemorrhage in the Development of Vascular Diseases.\",\"authors\":\"Atsushi Sakamoto, Alyssa Grogan, Rika Kawakami, Alexandra Finn, Palak Shah, Diya Nair, Krish Batra, Caroline Bailen, Mirai Sakamoto, Renu Virmani, Aloke V Finn\",\"doi\":\"10.1161/ATVBAHA.125.321439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intraplaque hemorrhage plays a critical role in the life of advancing atherosclerotic plaques, not only by triggering an acute increase in lesion size but also by attracting macrophages to the site. Lysis of erythrocytes in these areas is thought to be caused by oxidative stress, which induces the release of free Hb (hemoglobin), which is quickly bound by haptoglobin to form Hb-haptoglobin complexes. Macrophages are the only cells in the body capable of scavenging these complexes through the CD (cluster of differentiation) 163 scavenger receptor, which mediates Hb-haptoglobin ingestion, driving their differentiation. Emerging data suggest that these Hb-stimulated macrophages play an essential role in responding to intraplaque hemorrhage through mediating iron metabolism and influencing other cell types, including endothelial and smooth muscle cells. This review focuses on the role of Hb-stimulated macrophages in promoting atherogenesis through their effects on (1) endothelial activation, neoangiogenesis, and vascular permeability; (2) endothelial-to-mesenchymal cell transition and subsequent apoptosis; and (3) the prevention of smooth muscle cell osteogenic transformation and calcification. These functions may also be relevant to other vascular diseases where erythrocyte accumulation drives the formation of Hb-stimulated macrophages, which is a fundamental response to hemorrhage no matter the clinical setting.</p>\",\"PeriodicalId\":8401,\"journal\":{\"name\":\"Arteriosclerosis, Thrombosis, and Vascular Biology\",\"volume\":\" \",\"pages\":\"1021-1030\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arteriosclerosis, Thrombosis, and Vascular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/ATVBAHA.125.321439\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.125.321439","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Role of Hemoglobin-Stimulated Macrophages and Intraplaque Hemorrhage in the Development of Vascular Diseases.
Intraplaque hemorrhage plays a critical role in the life of advancing atherosclerotic plaques, not only by triggering an acute increase in lesion size but also by attracting macrophages to the site. Lysis of erythrocytes in these areas is thought to be caused by oxidative stress, which induces the release of free Hb (hemoglobin), which is quickly bound by haptoglobin to form Hb-haptoglobin complexes. Macrophages are the only cells in the body capable of scavenging these complexes through the CD (cluster of differentiation) 163 scavenger receptor, which mediates Hb-haptoglobin ingestion, driving their differentiation. Emerging data suggest that these Hb-stimulated macrophages play an essential role in responding to intraplaque hemorrhage through mediating iron metabolism and influencing other cell types, including endothelial and smooth muscle cells. This review focuses on the role of Hb-stimulated macrophages in promoting atherogenesis through their effects on (1) endothelial activation, neoangiogenesis, and vascular permeability; (2) endothelial-to-mesenchymal cell transition and subsequent apoptosis; and (3) the prevention of smooth muscle cell osteogenic transformation and calcification. These functions may also be relevant to other vascular diseases where erythrocyte accumulation drives the formation of Hb-stimulated macrophages, which is a fundamental response to hemorrhage no matter the clinical setting.
期刊介绍:
The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA).
The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.