RAB22A/TMEM33/RTN4的组装启动了分泌性er吞噬途径。

IF 13 1区 生物学 Q1 CELL BIOLOGY
Xueping Zheng, Dongmei Fang, Hao Shan, Beibei Xiao, Denghui Wei, Yingyi Ouyang, Lanqing Huo, Zhonghan Zhang, Yuanzhong Wu, Ruhua Zhang, Tiebang Kang, Ying Gao
{"title":"RAB22A/TMEM33/RTN4的组装启动了分泌性er吞噬途径。","authors":"Xueping Zheng, Dongmei Fang, Hao Shan, Beibei Xiao, Denghui Wei, Yingyi Ouyang, Lanqing Huo, Zhonghan Zhang, Yuanzhong Wu, Ruhua Zhang, Tiebang Kang, Ying Gao","doi":"10.1038/s41421-025-00792-2","DOIUrl":null,"url":null,"abstract":"<p><p>Rafeesome, a newly identified multivesicular body (MVB)-like organelle, forms through the fusion of RAB22A-mediated ER-derived noncanonical autophagosomes with RAB22A-positive early endosomes. However, the mechanism underlying the formation of RAB22A-mediated noncanonical autophagosomes remains unclear. Herein, we report a secretory ER-phagy pathway in which the assembly of RAB22A/TMEM33/RTN4 induces the clustering of high-molecular-weight RTN4 oligomers, leading to ER membrane remodeling. This remodeling drives the biogenesis of ER-derived RTN4-positive noncanonical autophagosomes, which are ultimately secreted as TMEM33-marked RAB22A-induced extracellular vesicles (R-EVs) via Rafeesome. Specifically, RAB22A interacts with the tubular ER membrane protein TMEM33, which binds to the TM2 domain of the ER-shaping protein RTN4, promoting RTN4 homo-oligomerization and thereby generating RTN4-enriched microdomains. Consequently, the RTN4 microdomains may induce high curvature of the ER, facilitating the bud scission of RTN4-positive vesicles. These vesicles are transported by ATG9A and develop into isolation membranes (IMs), which are then anchored by LC3-II, a process catalyzed by the ATG12-ATG5-ATG16L1 complex, allowing them to grow into sealed RTN4 noncanonical autophagosome. While being packaged into these ER-derived intermediate compartments, ER cargoes bypass lysosomal degradation and are directed to secretory autophagy via the Rafeesome-R-EV route. Our findings reveal a secretory ER-phagy pathway initiated by the assembly of RAB22A/TMEM33/RTN4, providing new insights into the connection between ER-phagy and extracellular vesicles.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"41"},"PeriodicalIF":13.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041605/pdf/","citationCount":"0","resultStr":"{\"title\":\"The assembly of RAB22A/TMEM33/RTN4 initiates a secretory ER-phagy pathway.\",\"authors\":\"Xueping Zheng, Dongmei Fang, Hao Shan, Beibei Xiao, Denghui Wei, Yingyi Ouyang, Lanqing Huo, Zhonghan Zhang, Yuanzhong Wu, Ruhua Zhang, Tiebang Kang, Ying Gao\",\"doi\":\"10.1038/s41421-025-00792-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rafeesome, a newly identified multivesicular body (MVB)-like organelle, forms through the fusion of RAB22A-mediated ER-derived noncanonical autophagosomes with RAB22A-positive early endosomes. However, the mechanism underlying the formation of RAB22A-mediated noncanonical autophagosomes remains unclear. Herein, we report a secretory ER-phagy pathway in which the assembly of RAB22A/TMEM33/RTN4 induces the clustering of high-molecular-weight RTN4 oligomers, leading to ER membrane remodeling. This remodeling drives the biogenesis of ER-derived RTN4-positive noncanonical autophagosomes, which are ultimately secreted as TMEM33-marked RAB22A-induced extracellular vesicles (R-EVs) via Rafeesome. Specifically, RAB22A interacts with the tubular ER membrane protein TMEM33, which binds to the TM2 domain of the ER-shaping protein RTN4, promoting RTN4 homo-oligomerization and thereby generating RTN4-enriched microdomains. Consequently, the RTN4 microdomains may induce high curvature of the ER, facilitating the bud scission of RTN4-positive vesicles. These vesicles are transported by ATG9A and develop into isolation membranes (IMs), which are then anchored by LC3-II, a process catalyzed by the ATG12-ATG5-ATG16L1 complex, allowing them to grow into sealed RTN4 noncanonical autophagosome. While being packaged into these ER-derived intermediate compartments, ER cargoes bypass lysosomal degradation and are directed to secretory autophagy via the Rafeesome-R-EV route. Our findings reveal a secretory ER-phagy pathway initiated by the assembly of RAB22A/TMEM33/RTN4, providing new insights into the connection between ER-phagy and extracellular vesicles.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"11 1\",\"pages\":\"41\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041605/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-025-00792-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00792-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Rafeesome是一种新发现的多泡体(MVB)样细胞器,通过rab22a介导的er来源的非典型自噬体与rab22a阳性的早期内体融合而形成。然而,rab22a介导的非典型自噬体形成的机制尚不清楚。在此,我们报道了一个分泌性ER吞噬途径,其中RAB22A/TMEM33/RTN4的组装诱导高分子量RTN4低聚物聚集,导致ER膜重塑。这种重塑驱动er来源的rtn4阳性非典型自噬体的生物发生,最终通过rafesome以tmem33标记的rab22a诱导的细胞外囊泡(r - ev)的形式分泌。具体来说,RAB22A与管状内质网膜蛋白TMEM33相互作用,后者结合内质网成形蛋白RTN4的TM2结构域,促进RTN4同质寡聚,从而产生RTN4富集微结构域。因此,RTN4微结构域可以诱导内质网的高曲率,促进RTN4阳性囊泡的芽裂。这些囊泡由ATG9A运输并发育成隔离膜(IMs),然后由ATG12-ATG5-ATG16L1复合物催化的LC3-II锚定,使它们生长成密封的RTN4非典型自噬体。当内质网货物被包装成这些内质网衍生的中间隔室时,内质网货物绕过溶酶体降解,并通过Rafeesome-R-EV途径直接进入分泌性自噬。我们的研究结果揭示了由RAB22A/TMEM33/RTN4组装启动的分泌性er吞噬途径,为er吞噬与细胞外囊泡之间的联系提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The assembly of RAB22A/TMEM33/RTN4 initiates a secretory ER-phagy pathway.

Rafeesome, a newly identified multivesicular body (MVB)-like organelle, forms through the fusion of RAB22A-mediated ER-derived noncanonical autophagosomes with RAB22A-positive early endosomes. However, the mechanism underlying the formation of RAB22A-mediated noncanonical autophagosomes remains unclear. Herein, we report a secretory ER-phagy pathway in which the assembly of RAB22A/TMEM33/RTN4 induces the clustering of high-molecular-weight RTN4 oligomers, leading to ER membrane remodeling. This remodeling drives the biogenesis of ER-derived RTN4-positive noncanonical autophagosomes, which are ultimately secreted as TMEM33-marked RAB22A-induced extracellular vesicles (R-EVs) via Rafeesome. Specifically, RAB22A interacts with the tubular ER membrane protein TMEM33, which binds to the TM2 domain of the ER-shaping protein RTN4, promoting RTN4 homo-oligomerization and thereby generating RTN4-enriched microdomains. Consequently, the RTN4 microdomains may induce high curvature of the ER, facilitating the bud scission of RTN4-positive vesicles. These vesicles are transported by ATG9A and develop into isolation membranes (IMs), which are then anchored by LC3-II, a process catalyzed by the ATG12-ATG5-ATG16L1 complex, allowing them to grow into sealed RTN4 noncanonical autophagosome. While being packaged into these ER-derived intermediate compartments, ER cargoes bypass lysosomal degradation and are directed to secretory autophagy via the Rafeesome-R-EV route. Our findings reveal a secretory ER-phagy pathway initiated by the assembly of RAB22A/TMEM33/RTN4, providing new insights into the connection between ER-phagy and extracellular vesicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信