从振子网络信号中重建相幅动力学。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0251072
Azamat Yeldesbay, Gemma Huguet, Silvia Daun
{"title":"从振子网络信号中重建相幅动力学。","authors":"Azamat Yeldesbay, Gemma Huguet, Silvia Daun","doi":"10.1063/5.0251072","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel method of reconstructing the phase-amplitude dynamics directly from signals of a network of oscillators to estimate the coupling between its nodes. For this purpose, we use the recent advances in the field of phase-amplitude reduction of oscillatory systems, which allow the representation of an uncoupled oscillatory system as a phase-amplitude oscillator in a unique form using transformations (parameterizations) related to the eigenfunctions of the Koopman operator. By combining the parameterization method and the Fourier-Laplace averaging method for finding the eigenfunctions of the Koopman operator, we developed a method of assessing the transformation functions from the signals of the interacting oscillatory systems. The resulting reconstructed dynamical system is a network of phase-amplitude oscillators with the interactions between them represented as coupling functions in phase and amplitude coordinates.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of phase-amplitude dynamics from signals of a network of oscillators.\",\"authors\":\"Azamat Yeldesbay, Gemma Huguet, Silvia Daun\",\"doi\":\"10.1063/5.0251072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a novel method of reconstructing the phase-amplitude dynamics directly from signals of a network of oscillators to estimate the coupling between its nodes. For this purpose, we use the recent advances in the field of phase-amplitude reduction of oscillatory systems, which allow the representation of an uncoupled oscillatory system as a phase-amplitude oscillator in a unique form using transformations (parameterizations) related to the eigenfunctions of the Koopman operator. By combining the parameterization method and the Fourier-Laplace averaging method for finding the eigenfunctions of the Koopman operator, we developed a method of assessing the transformation functions from the signals of the interacting oscillatory systems. The resulting reconstructed dynamical system is a network of phase-amplitude oscillators with the interactions between them represented as coupling functions in phase and amplitude coordinates.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0251072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0251072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种直接从振子网络的信号中重建振子网络的相幅动力学来估计其节点之间的耦合的新方法。为此,我们使用了振荡系统的相位降幅领域的最新进展,它允许使用与库普曼算子的特征函数相关的变换(参数化)以唯一形式将非耦合振荡系统表示为相位振幅振荡器。将求库普曼算子特征函数的参数化方法与傅里叶-拉普拉斯平均法相结合,提出了一种从相互作用的振荡系统的信号中求变换函数的方法。由此重建的动力系统是一个相幅振子网络,它们之间的相互作用表示为相位和振幅坐标中的耦合函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of phase-amplitude dynamics from signals of a network of oscillators.

We present a novel method of reconstructing the phase-amplitude dynamics directly from signals of a network of oscillators to estimate the coupling between its nodes. For this purpose, we use the recent advances in the field of phase-amplitude reduction of oscillatory systems, which allow the representation of an uncoupled oscillatory system as a phase-amplitude oscillator in a unique form using transformations (parameterizations) related to the eigenfunctions of the Koopman operator. By combining the parameterization method and the Fourier-Laplace averaging method for finding the eigenfunctions of the Koopman operator, we developed a method of assessing the transformation functions from the signals of the interacting oscillatory systems. The resulting reconstructed dynamical system is a network of phase-amplitude oscillators with the interactions between them represented as coupling functions in phase and amplitude coordinates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信