GrameneOryza:水稻基因组、遗传变异和功能数据的综合资源。

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Sharon Wei, Kapeel Chougule, Andrew Olson, Zhenyuan Lu, Marcela K Tello-Ruiz, Vivek Kumar, Sunita Kumari, Lifang Zhang, Audra Olson, Catherine Kim, Nick Gladman, Doreen Ware
{"title":"GrameneOryza:水稻基因组、遗传变异和功能数据的综合资源。","authors":"Sharon Wei, Kapeel Chougule, Andrew Olson, Zhenyuan Lu, Marcela K Tello-Ruiz, Vivek Kumar, Sunita Kumari, Lifang Zhang, Audra Olson, Catherine Kim, Nick Gladman, Doreen Ware","doi":"10.1093/database/baaf021","DOIUrl":null,"url":null,"abstract":"<p><p>Rice is a vital staple crop, sustaining over half of the global population, and is a key model for genetic research. To support the growing need for comprehensive and accessible rice genomic data, GrameneOryza (https://oryza.gramene.org) was developed as an online resource adhering to FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data management. It distinguishes itself through its comprehensive multispecies focus, encompassing a wide variety of Oryza genomes and related species, and its integration with FAIR principles to ensure data accessibility and usability. It offers a community curated selection of high-quality Oryza genomes, genetic variation, gene function, and trait data. The latest release, version 8, includes 28 Oryza genomes, covering wild rice and domesticated cultivars. These genomes, along with Leersia perrieri and seven additional outgroup species, form the basis for 38 K protein-coding gene family trees, essential for identifying orthologs, paralogs, and developing pan-gene sets. GrameneOryza's genetic variation data features 66 million single-nucleotide variants (SNVs) anchored to the Os-Nipponbare-Reference-IRGSP-1.0 genome, derived from various studies, including the Rice Genome 3 K (RG3K) project. The RG3K sequence reads were also mapped to seven additional platinum-quality Asian rice genomes, resulting in 19 million SNVs for each genome, significantly expanding the coverage of genetic variation beyond the Nipponbare reference. Of the 66 million SNVs on IRGSP-1.0, 27 million acquired standardized reference SNP cluster identifiers (rsIDs) from the European Variation Archive release v5. Additionally, 1200 distinct phenotypes provide a comprehensive overview of quantitative trait loci (QTL) features. The newly introduced Oryza CLIMtools portal offers insights into environmental impacts on genome adaptation. The platform's integrated search interface, along with a BLAST server and curation tools, facilitates user access to genomic, phylogenetic, gene function, and QTL data, supporting broad research applications. Database URL: https://oryza.gramene.org.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986821/pdf/","citationCount":"0","resultStr":"{\"title\":\"GrameneOryza: a comprehensive resource for Oryza genomes, genetic variation, and functional data.\",\"authors\":\"Sharon Wei, Kapeel Chougule, Andrew Olson, Zhenyuan Lu, Marcela K Tello-Ruiz, Vivek Kumar, Sunita Kumari, Lifang Zhang, Audra Olson, Catherine Kim, Nick Gladman, Doreen Ware\",\"doi\":\"10.1093/database/baaf021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice is a vital staple crop, sustaining over half of the global population, and is a key model for genetic research. To support the growing need for comprehensive and accessible rice genomic data, GrameneOryza (https://oryza.gramene.org) was developed as an online resource adhering to FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data management. It distinguishes itself through its comprehensive multispecies focus, encompassing a wide variety of Oryza genomes and related species, and its integration with FAIR principles to ensure data accessibility and usability. It offers a community curated selection of high-quality Oryza genomes, genetic variation, gene function, and trait data. The latest release, version 8, includes 28 Oryza genomes, covering wild rice and domesticated cultivars. These genomes, along with Leersia perrieri and seven additional outgroup species, form the basis for 38 K protein-coding gene family trees, essential for identifying orthologs, paralogs, and developing pan-gene sets. GrameneOryza's genetic variation data features 66 million single-nucleotide variants (SNVs) anchored to the Os-Nipponbare-Reference-IRGSP-1.0 genome, derived from various studies, including the Rice Genome 3 K (RG3K) project. The RG3K sequence reads were also mapped to seven additional platinum-quality Asian rice genomes, resulting in 19 million SNVs for each genome, significantly expanding the coverage of genetic variation beyond the Nipponbare reference. Of the 66 million SNVs on IRGSP-1.0, 27 million acquired standardized reference SNP cluster identifiers (rsIDs) from the European Variation Archive release v5. Additionally, 1200 distinct phenotypes provide a comprehensive overview of quantitative trait loci (QTL) features. The newly introduced Oryza CLIMtools portal offers insights into environmental impacts on genome adaptation. The platform's integrated search interface, along with a BLAST server and curation tools, facilitates user access to genomic, phylogenetic, gene function, and QTL data, supporting broad research applications. Database URL: https://oryza.gramene.org.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986821/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baaf021\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水稻是一种重要的主要作物,养活了全球一半以上的人口,是基因研究的关键模型。为了支持对全面和可访问的水稻基因组数据日益增长的需求,GrameneOryza (https://oryza.gramene.org)被开发为遵循FAIR(可查找、可访问、可互操作和可重用)数据管理原则的在线资源。它以全面的多物种研究为重点,涵盖了各种各样的Oryza基因组和相关物种,并与FAIR原则相结合,以确保数据的可访问性和可用性。它提供了一个社区策划的高质量稻基因组,遗传变异,基因功能和性状数据的选择。最新发布的版本8包括28个水稻基因组,涵盖野生稻和驯化品种。这些基因组,连同狐猴和7个额外的外群物种,构成了38k蛋白编码基因家谱的基础,对于识别同源物、相似物和发展泛基因集至关重要。GrameneOryza的遗传变异数据包含6600万个单核苷酸变异(snv),这些变异锚定在Os-Nipponbare-Reference-IRGSP-1.0基因组上,这些变异来自包括水稻基因组3k (RG3K)项目在内的各种研究。RG3K序列还被映射到另外7个铂质亚洲水稻基因组,每个基因组有1900万个snv,大大扩大了Nipponbare参考基因的遗传变异覆盖范围。在IRGSP-1.0上的6600万snv中,2700万从欧洲变异档案版本v5中获得了标准化参考SNP集群标识符(rsid)。此外,1200种不同的表型提供了数量性状位点(QTL)特征的全面概述。新推出的Oryza CLIMtools门户网站提供了对环境对基因组适应的影响的见解。该平台的集成搜索界面,以及BLAST服务器和管理工具,方便用户访问基因组,系统发育,基因功能和QTL数据,支持广泛的研究应用。数据库地址:https://oryza.gramene.org。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GrameneOryza: a comprehensive resource for Oryza genomes, genetic variation, and functional data.

Rice is a vital staple crop, sustaining over half of the global population, and is a key model for genetic research. To support the growing need for comprehensive and accessible rice genomic data, GrameneOryza (https://oryza.gramene.org) was developed as an online resource adhering to FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data management. It distinguishes itself through its comprehensive multispecies focus, encompassing a wide variety of Oryza genomes and related species, and its integration with FAIR principles to ensure data accessibility and usability. It offers a community curated selection of high-quality Oryza genomes, genetic variation, gene function, and trait data. The latest release, version 8, includes 28 Oryza genomes, covering wild rice and domesticated cultivars. These genomes, along with Leersia perrieri and seven additional outgroup species, form the basis for 38 K protein-coding gene family trees, essential for identifying orthologs, paralogs, and developing pan-gene sets. GrameneOryza's genetic variation data features 66 million single-nucleotide variants (SNVs) anchored to the Os-Nipponbare-Reference-IRGSP-1.0 genome, derived from various studies, including the Rice Genome 3 K (RG3K) project. The RG3K sequence reads were also mapped to seven additional platinum-quality Asian rice genomes, resulting in 19 million SNVs for each genome, significantly expanding the coverage of genetic variation beyond the Nipponbare reference. Of the 66 million SNVs on IRGSP-1.0, 27 million acquired standardized reference SNP cluster identifiers (rsIDs) from the European Variation Archive release v5. Additionally, 1200 distinct phenotypes provide a comprehensive overview of quantitative trait loci (QTL) features. The newly introduced Oryza CLIMtools portal offers insights into environmental impacts on genome adaptation. The platform's integrated search interface, along with a BLAST server and curation tools, facilitates user access to genomic, phylogenetic, gene function, and QTL data, supporting broad research applications. Database URL: https://oryza.gramene.org.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信