{"title":"评价肌红蛋白与核糖相互作用后的结构和稳定性:光谱和分子模拟方法。","authors":"Rasoul Eslami-Farsani, Sadegh Farhadian, Behzad Shareghi, Sanaz Asgharzadeh, Mahsa Behjati Moghaddam, Lida Momeni, Reza Assaran-Darban, Mina Evini","doi":"10.1080/07391102.2025.2499223","DOIUrl":null,"url":null,"abstract":"<p><p>Osmolytes, as small organic molecules, possess a remarkable ability to exert protective effects on biomacromolecules, including proteins, while preserving their inherent functionality. Myoglobin, a globular protein comprising a sequence of 153 amino acids, fulfills a crucial biological role by exhibiting reversible oxygen binding capabilities and facilitating its efficient transfer to the muscular tissues. In this study, the effects of ribose on myoglobin protein in sodium phosphate buffer were studied by UV-Vis's spectrophotometry and spectrofluorimetric investigations at pH 7.4. Also, the interaction was theoretically studied through molecular dynamics simulation and molecular docking techniques. The results showed that the ribose stabilizes the protein structure by increasing the melting temperature (T<sub>m</sub>) of myoglobin. The fluorescence intensity of myoglobin decreased with a static quenching mechanism at different temperatures. The thermodynamic data obtained from the experimental results also predicted that the intermolecular forces affecting the formation of a myoglobin-ribose complex are mainly the van der Waals interactions and hydrogen bindings. Theoretical molecular docking analyses unveiled the favored binding site of ribose within the structure of myoglobin. Subsequent molecular dynamics simulations validated the stability of the complex formed between ribose and myoglobin. Our findings are fundamental for understanding the molecular-level details of myoglobin-ligand interactions, opening avenues for innovative approaches to prevent or alleviate myoglobin dysfunction in various disease conditions.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-12"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the structure and stability of myoglobin after interaction with ribose: spectroscopic and molecular simulation approach.\",\"authors\":\"Rasoul Eslami-Farsani, Sadegh Farhadian, Behzad Shareghi, Sanaz Asgharzadeh, Mahsa Behjati Moghaddam, Lida Momeni, Reza Assaran-Darban, Mina Evini\",\"doi\":\"10.1080/07391102.2025.2499223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osmolytes, as small organic molecules, possess a remarkable ability to exert protective effects on biomacromolecules, including proteins, while preserving their inherent functionality. Myoglobin, a globular protein comprising a sequence of 153 amino acids, fulfills a crucial biological role by exhibiting reversible oxygen binding capabilities and facilitating its efficient transfer to the muscular tissues. In this study, the effects of ribose on myoglobin protein in sodium phosphate buffer were studied by UV-Vis's spectrophotometry and spectrofluorimetric investigations at pH 7.4. Also, the interaction was theoretically studied through molecular dynamics simulation and molecular docking techniques. The results showed that the ribose stabilizes the protein structure by increasing the melting temperature (T<sub>m</sub>) of myoglobin. The fluorescence intensity of myoglobin decreased with a static quenching mechanism at different temperatures. The thermodynamic data obtained from the experimental results also predicted that the intermolecular forces affecting the formation of a myoglobin-ribose complex are mainly the van der Waals interactions and hydrogen bindings. Theoretical molecular docking analyses unveiled the favored binding site of ribose within the structure of myoglobin. Subsequent molecular dynamics simulations validated the stability of the complex formed between ribose and myoglobin. Our findings are fundamental for understanding the molecular-level details of myoglobin-ligand interactions, opening avenues for innovative approaches to prevent or alleviate myoglobin dysfunction in various disease conditions.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2025.2499223\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2025.2499223","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of the structure and stability of myoglobin after interaction with ribose: spectroscopic and molecular simulation approach.
Osmolytes, as small organic molecules, possess a remarkable ability to exert protective effects on biomacromolecules, including proteins, while preserving their inherent functionality. Myoglobin, a globular protein comprising a sequence of 153 amino acids, fulfills a crucial biological role by exhibiting reversible oxygen binding capabilities and facilitating its efficient transfer to the muscular tissues. In this study, the effects of ribose on myoglobin protein in sodium phosphate buffer were studied by UV-Vis's spectrophotometry and spectrofluorimetric investigations at pH 7.4. Also, the interaction was theoretically studied through molecular dynamics simulation and molecular docking techniques. The results showed that the ribose stabilizes the protein structure by increasing the melting temperature (Tm) of myoglobin. The fluorescence intensity of myoglobin decreased with a static quenching mechanism at different temperatures. The thermodynamic data obtained from the experimental results also predicted that the intermolecular forces affecting the formation of a myoglobin-ribose complex are mainly the van der Waals interactions and hydrogen bindings. Theoretical molecular docking analyses unveiled the favored binding site of ribose within the structure of myoglobin. Subsequent molecular dynamics simulations validated the stability of the complex formed between ribose and myoglobin. Our findings are fundamental for understanding the molecular-level details of myoglobin-ligand interactions, opening avenues for innovative approaches to prevent or alleviate myoglobin dysfunction in various disease conditions.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.