STCDB4ND:神经系统疾病信号转导分类数据库。

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Boyan Gong, Sida Li, Yifan Chen, Liya Liu, Ralf Hofestädt, Ming Chen
{"title":"STCDB4ND:神经系统疾病信号转导分类数据库。","authors":"Boyan Gong, Sida Li, Yifan Chen, Liya Liu, Ralf Hofestädt, Ming Chen","doi":"10.1093/database/baaf032","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disorders pose significant global health challenges due to their complex etiology and insufficient understanding of underlying mechanisms. Signal transduction pathways are critical in the pathophysiology of these diseases and have been extensively studied to develop therapeutic interventions. However, existing databases for biological signal pathways often overlook the dynamic interactions between entities within these pathways and lack standardized representations of the signaling processes. To address these limitations, we present STCDB4ND, a specialized database focused on signal transduction pathways associated with neurological diseases. Utilizing the ST classification system, STCDB4ND provides a unified framework for pathway representation, emphasizing interactions and pathway characteristics. The database features advanced visualization tools, network analysis capabilities, and a key factor identification module, enabling researchers to comprehensively study these complex networks. Our analysis of neurological disease-related pathways using STCDB4ND revealed key signaling factors and supported existing findings on pathogenic mechanisms STCDB4ND serves as a valuable resource for advancing the understanding of neurological disease pathways and promoting novel therapeutic approaches. And we believe that STCDB will provide greater convenience for researchers in various fields as we expand the STCDB system's database in the future. Database URL: https://bis.zju.edu.cn/STCDB.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047452/pdf/","citationCount":"0","resultStr":"{\"title\":\"STCDB4ND: a signal transduction classification database for neurological diseases.\",\"authors\":\"Boyan Gong, Sida Li, Yifan Chen, Liya Liu, Ralf Hofestädt, Ming Chen\",\"doi\":\"10.1093/database/baaf032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurological disorders pose significant global health challenges due to their complex etiology and insufficient understanding of underlying mechanisms. Signal transduction pathways are critical in the pathophysiology of these diseases and have been extensively studied to develop therapeutic interventions. However, existing databases for biological signal pathways often overlook the dynamic interactions between entities within these pathways and lack standardized representations of the signaling processes. To address these limitations, we present STCDB4ND, a specialized database focused on signal transduction pathways associated with neurological diseases. Utilizing the ST classification system, STCDB4ND provides a unified framework for pathway representation, emphasizing interactions and pathway characteristics. The database features advanced visualization tools, network analysis capabilities, and a key factor identification module, enabling researchers to comprehensively study these complex networks. Our analysis of neurological disease-related pathways using STCDB4ND revealed key signaling factors and supported existing findings on pathogenic mechanisms STCDB4ND serves as a valuable resource for advancing the understanding of neurological disease pathways and promoting novel therapeutic approaches. And we believe that STCDB will provide greater convenience for researchers in various fields as we expand the STCDB system's database in the future. Database URL: https://bis.zju.edu.cn/STCDB.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047452/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baaf032\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经系统疾病由于其复杂的病因和对其潜在机制的了解不足,构成了重大的全球健康挑战。信号转导通路在这些疾病的病理生理学中至关重要,并已被广泛研究以开发治疗干预措施。然而,现有的生物信号通路数据库往往忽略了这些通路中实体之间的动态相互作用,并且缺乏信号过程的标准化表示。为了解决这些限制,我们提出了STCDB4ND,一个专门的数据库,专注于与神经系统疾病相关的信号转导途径。利用ST分类系统,STCDB4ND提供了一个统一的通路表示框架,强调相互作用和通路特征。该数据库具有先进的可视化工具、网络分析能力和关键因素识别模块,使研究人员能够全面研究这些复杂的网络。我们使用STCDB4ND对神经系统疾病相关通路进行分析,揭示了关键的信号因子,并支持了现有的致病机制发现,STCDB4ND为促进对神经系统疾病通路的理解和促进新的治疗方法提供了宝贵的资源。我们相信,随着未来STCDB系统数据库的扩展,STCDB将为各个领域的研究人员提供更大的便利。数据库地址:https://bis.zju.edu.cn/STCDB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STCDB4ND: a signal transduction classification database for neurological diseases.

Neurological disorders pose significant global health challenges due to their complex etiology and insufficient understanding of underlying mechanisms. Signal transduction pathways are critical in the pathophysiology of these diseases and have been extensively studied to develop therapeutic interventions. However, existing databases for biological signal pathways often overlook the dynamic interactions between entities within these pathways and lack standardized representations of the signaling processes. To address these limitations, we present STCDB4ND, a specialized database focused on signal transduction pathways associated with neurological diseases. Utilizing the ST classification system, STCDB4ND provides a unified framework for pathway representation, emphasizing interactions and pathway characteristics. The database features advanced visualization tools, network analysis capabilities, and a key factor identification module, enabling researchers to comprehensively study these complex networks. Our analysis of neurological disease-related pathways using STCDB4ND revealed key signaling factors and supported existing findings on pathogenic mechanisms STCDB4ND serves as a valuable resource for advancing the understanding of neurological disease pathways and promoting novel therapeutic approaches. And we believe that STCDB will provide greater convenience for researchers in various fields as we expand the STCDB system's database in the future. Database URL: https://bis.zju.edu.cn/STCDB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信