两个等时共振扰动的二次无剪切分岔。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-04-01 DOI:10.1063/5.0233732
B B Leal, M J Lazarotto, M Mugnaine, A M Ozorio de Almeida, R L Viana, I L Caldas
{"title":"两个等时共振扰动的二次无剪切分岔。","authors":"B B Leal, M J Lazarotto, M Mugnaine, A M Ozorio de Almeida, R L Viana, I L Caldas","doi":"10.1063/5.0233732","DOIUrl":null,"url":null,"abstract":"<p><p>Shearless curves are characteristic of nontwist systems and are not expected to exist in twist systems. However, the appearance of secondary shearless curves in the central area of islands has been reported in a few studies where the twist condition is still satisfied. In addition to these studies, we present a scenario in which secondary shearless curves emerge when two independent resonances interact on the same resonant surface. By varying the magnitude of the perturbation parameters, we observe the emergence of multiple secondary shearless curves, which can appear in pairs or individually. Our results are obtained for two discrete systems-the two-harmonic standard map and the Ullmann map-as well as for the Walker-Ford Hamiltonian flow.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secondary shearless bifurcations for two isochronous resonant perturbations.\",\"authors\":\"B B Leal, M J Lazarotto, M Mugnaine, A M Ozorio de Almeida, R L Viana, I L Caldas\",\"doi\":\"10.1063/5.0233732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shearless curves are characteristic of nontwist systems and are not expected to exist in twist systems. However, the appearance of secondary shearless curves in the central area of islands has been reported in a few studies where the twist condition is still satisfied. In addition to these studies, we present a scenario in which secondary shearless curves emerge when two independent resonances interact on the same resonant surface. By varying the magnitude of the perturbation parameters, we observe the emergence of multiple secondary shearless curves, which can appear in pairs or individually. Our results are obtained for two discrete systems-the two-harmonic standard map and the Ullmann map-as well as for the Walker-Ford Hamiltonian flow.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233732\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0233732","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

无剪切曲线是非扭转系统的特征,在扭转系统中是不可能存在的。然而,在一些仍然满足扭转条件的研究中,岛屿中心区域出现了二次无剪切曲线。除了这些研究之外,我们还提出了当两个独立共振在同一共振面上相互作用时出现二次无剪切曲线的情况。通过改变扰动参数的大小,我们观察到多个次级无剪切曲线的出现,它们可以成对出现,也可以单独出现。我们的结果适用于两个离散系统——双谐波标准图和乌尔曼图——以及沃克-福特哈密顿流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secondary shearless bifurcations for two isochronous resonant perturbations.

Shearless curves are characteristic of nontwist systems and are not expected to exist in twist systems. However, the appearance of secondary shearless curves in the central area of islands has been reported in a few studies where the twist condition is still satisfied. In addition to these studies, we present a scenario in which secondary shearless curves emerge when two independent resonances interact on the same resonant surface. By varying the magnitude of the perturbation parameters, we observe the emergence of multiple secondary shearless curves, which can appear in pairs or individually. Our results are obtained for two discrete systems-the two-harmonic standard map and the Ullmann map-as well as for the Walker-Ford Hamiltonian flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信