家族性和双侧肾母细胞瘤的遗传和表观遗传易感性的不同途径。

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Jenny Wegert, Silke Appenzeller, Taryn D Treger, Heike Streitenberger, Barbara Ziegler, Sabrina Bausenwein, Christian Vokuhl, Conor Parks, Eva Jüttner, Susanne Gramlich, Karen Ernestus, Steven W Warman, Jörg Fuchs, Jochen Hubertus, Dietrich von Schweinitz, Birgit Fröhlich, Norbert Jorch, Ralf Knöfler, Carsten Friedrich, Selim Corbacioglu, Michael C Frühwald, Arnulf Pekrun, Dominik T Schneider, Jörg Faber, Jana Stursberg, Markus Metzler, Nils Welter, Kathy Pritchard-Jones, Norbert Graf, Rhoikos Furtwängler, Sam Behjati, Manfred Gessler
{"title":"家族性和双侧肾母细胞瘤的遗传和表观遗传易感性的不同途径。","authors":"Jenny Wegert, Silke Appenzeller, Taryn D Treger, Heike Streitenberger, Barbara Ziegler, Sabrina Bausenwein, Christian Vokuhl, Conor Parks, Eva Jüttner, Susanne Gramlich, Karen Ernestus, Steven W Warman, Jörg Fuchs, Jochen Hubertus, Dietrich von Schweinitz, Birgit Fröhlich, Norbert Jorch, Ralf Knöfler, Carsten Friedrich, Selim Corbacioglu, Michael C Frühwald, Arnulf Pekrun, Dominik T Schneider, Jörg Faber, Jana Stursberg, Markus Metzler, Nils Welter, Kathy Pritchard-Jones, Norbert Graf, Rhoikos Furtwängler, Sam Behjati, Manfred Gessler","doi":"10.1186/s13073-025-01482-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genetic predisposition is particularly common in children with the kidney cancer, Wilms tumor. In 10% of these children, this manifests as a family history of Wilms tumor or bilateral disease. The frequency and spectrum of underlying changes have not been systematically investigated.</p><p><strong>Methods: </strong>We analyzed 129 children with suspected Wilms tumor predisposition, 20 familial cases, and 109 children with bilateral disease, enrolled over 30 years in the German SIOP93-01/GPOH and SIOP2001 studies. We used whole exome, whole genome, and targeted DNA sequencing, together with MLPA and targeted methylation assays on tumor, blood, and normal kidney to determine predisposing changes.</p><p><strong>Results: </strong>Predisposing variants were identified in 117/129 children, comprising DNA variants (57%) and epigenetic changes (34%). Most children had predisposition variants in genes previously implicated in Wilms tumor: most prominently WT1 (n = 35) and less frequently TRIM28, REST, DIS3L2, CTR9, DICER1, CDC73, and NONO. Nine children carried germline mutations in cancer predisposition genes not considered Wilms tumor predisposition genes, such as CHEK2, CDKN2A, BLM, BRCA2, STK11, and FMN2. Predisposition via epigenetic BWS-IC1 alterations occurred as early somatic events, reflected by partial (mosaic) loss of imprinting or loss of heterozygosity at the IGF2/H19 locus in normal kidney or blood. These patients rarely had a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS). Especially WT1-driven tumors follow a stereotypical pathway of germline WT1 mutations becoming homozygous in renal precursor lesions through 11p LOH, which concomitantly activates imprinted IGF2 expression, with subsequent WNT pathway activation leading to tumor growth. There is a high rate of multicentric tumors, which may have previously been missed in unilateral tumors. While Wilms tumor predisposition genes relied on somatic inactivation of the second allele, this was different for general cancer predisposition genes. The latter cases were often associated with additional oncogenic alterations, similar to tumors with epigenetic predisposition.</p><p><strong>Conclusions: </strong>We identified two main mechanisms of Wilms tumor predisposition: either germline genetic alterations of Wilms tumor and, less frequently, general cancer genes; or postzygotic mosaic imprinting defects activating IGF2. These findings inform future genetic screening and risk assessment of affected children and lend support to liquid biopsy screening for enhanced therapeutic stratification.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"49"},"PeriodicalIF":10.4000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060375/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct pathways for genetic and epigenetic predisposition in familial and bilateral Wilms tumor.\",\"authors\":\"Jenny Wegert, Silke Appenzeller, Taryn D Treger, Heike Streitenberger, Barbara Ziegler, Sabrina Bausenwein, Christian Vokuhl, Conor Parks, Eva Jüttner, Susanne Gramlich, Karen Ernestus, Steven W Warman, Jörg Fuchs, Jochen Hubertus, Dietrich von Schweinitz, Birgit Fröhlich, Norbert Jorch, Ralf Knöfler, Carsten Friedrich, Selim Corbacioglu, Michael C Frühwald, Arnulf Pekrun, Dominik T Schneider, Jörg Faber, Jana Stursberg, Markus Metzler, Nils Welter, Kathy Pritchard-Jones, Norbert Graf, Rhoikos Furtwängler, Sam Behjati, Manfred Gessler\",\"doi\":\"10.1186/s13073-025-01482-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genetic predisposition is particularly common in children with the kidney cancer, Wilms tumor. In 10% of these children, this manifests as a family history of Wilms tumor or bilateral disease. The frequency and spectrum of underlying changes have not been systematically investigated.</p><p><strong>Methods: </strong>We analyzed 129 children with suspected Wilms tumor predisposition, 20 familial cases, and 109 children with bilateral disease, enrolled over 30 years in the German SIOP93-01/GPOH and SIOP2001 studies. We used whole exome, whole genome, and targeted DNA sequencing, together with MLPA and targeted methylation assays on tumor, blood, and normal kidney to determine predisposing changes.</p><p><strong>Results: </strong>Predisposing variants were identified in 117/129 children, comprising DNA variants (57%) and epigenetic changes (34%). Most children had predisposition variants in genes previously implicated in Wilms tumor: most prominently WT1 (n = 35) and less frequently TRIM28, REST, DIS3L2, CTR9, DICER1, CDC73, and NONO. Nine children carried germline mutations in cancer predisposition genes not considered Wilms tumor predisposition genes, such as CHEK2, CDKN2A, BLM, BRCA2, STK11, and FMN2. Predisposition via epigenetic BWS-IC1 alterations occurred as early somatic events, reflected by partial (mosaic) loss of imprinting or loss of heterozygosity at the IGF2/H19 locus in normal kidney or blood. These patients rarely had a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS). Especially WT1-driven tumors follow a stereotypical pathway of germline WT1 mutations becoming homozygous in renal precursor lesions through 11p LOH, which concomitantly activates imprinted IGF2 expression, with subsequent WNT pathway activation leading to tumor growth. There is a high rate of multicentric tumors, which may have previously been missed in unilateral tumors. While Wilms tumor predisposition genes relied on somatic inactivation of the second allele, this was different for general cancer predisposition genes. The latter cases were often associated with additional oncogenic alterations, similar to tumors with epigenetic predisposition.</p><p><strong>Conclusions: </strong>We identified two main mechanisms of Wilms tumor predisposition: either germline genetic alterations of Wilms tumor and, less frequently, general cancer genes; or postzygotic mosaic imprinting defects activating IGF2. These findings inform future genetic screening and risk assessment of affected children and lend support to liquid biopsy screening for enhanced therapeutic stratification.</p>\",\"PeriodicalId\":12645,\"journal\":{\"name\":\"Genome Medicine\",\"volume\":\"17 1\",\"pages\":\"49\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060375/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13073-025-01482-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01482-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:遗传易感性在儿童肾癌、肾母细胞瘤中尤为常见。在这些儿童中,10%表现为肾母细胞瘤或双侧疾病的家族史。潜在变化的频率和范围尚未得到系统的调查。方法:我们分析了129例疑似Wilms肿瘤易感性的儿童、20例家族性病例和109例双侧疾病儿童,这些儿童在德国SIOP93-01/GPOH和SIOP2001研究中登记了30多年。我们使用全外显子组、全基因组和靶向DNA测序,以及肿瘤、血液和正常肾脏的MLPA和靶向甲基化测定来确定易感改变。结果:117/129名儿童中发现易感变异,包括DNA变异(57%)和表观遗传改变(34%)。大多数儿童具有先前与Wilms肿瘤相关的基因易感变异:最显著的是WT1 (n = 35),较少见的是TRIM28、REST、DIS3L2、CTR9、DICER1、CDC73和NONO。9名儿童携带非Wilms肿瘤易感基因的癌症易感基因种系突变,如CHEK2、CDKN2A、BLM、BRCA2、STK11和FMN2。通过表观遗传BWS-IC1改变的易感性发生在早期体细胞事件中,反映在正常肾脏或血液中IGF2/H19位点的部分(马赛克)印迹丧失或杂合性丧失。这些患者很少有临床诊断为贝克威氏综合征(BWS)。特别是WT1驱动的肿瘤遵循一种典型的途径,即种系WT1突变通过11p LOH在肾前体病变中变为纯合,同时激活印迹IGF2表达,随后WNT途径激活导致肿瘤生长。多中心肿瘤的发生率很高,以前可能在单侧肿瘤中被遗漏。虽然Wilms肿瘤易感基因依赖于第二个等位基因的体细胞失活,但这与一般癌症易感基因不同。后一种情况通常与额外的致癌改变有关,类似于具有表观遗传易感性的肿瘤。结论:我们确定了肾母细胞瘤易感性的两种主要机制:肾母细胞瘤的种系遗传改变,以及不太常见的一般癌症基因;或激活IGF2的合子后镶嵌印记缺陷。这些发现为未来的遗传筛查和患病儿童的风险评估提供了信息,并为加强治疗分层的液体活检筛查提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct pathways for genetic and epigenetic predisposition in familial and bilateral Wilms tumor.

Background: Genetic predisposition is particularly common in children with the kidney cancer, Wilms tumor. In 10% of these children, this manifests as a family history of Wilms tumor or bilateral disease. The frequency and spectrum of underlying changes have not been systematically investigated.

Methods: We analyzed 129 children with suspected Wilms tumor predisposition, 20 familial cases, and 109 children with bilateral disease, enrolled over 30 years in the German SIOP93-01/GPOH and SIOP2001 studies. We used whole exome, whole genome, and targeted DNA sequencing, together with MLPA and targeted methylation assays on tumor, blood, and normal kidney to determine predisposing changes.

Results: Predisposing variants were identified in 117/129 children, comprising DNA variants (57%) and epigenetic changes (34%). Most children had predisposition variants in genes previously implicated in Wilms tumor: most prominently WT1 (n = 35) and less frequently TRIM28, REST, DIS3L2, CTR9, DICER1, CDC73, and NONO. Nine children carried germline mutations in cancer predisposition genes not considered Wilms tumor predisposition genes, such as CHEK2, CDKN2A, BLM, BRCA2, STK11, and FMN2. Predisposition via epigenetic BWS-IC1 alterations occurred as early somatic events, reflected by partial (mosaic) loss of imprinting or loss of heterozygosity at the IGF2/H19 locus in normal kidney or blood. These patients rarely had a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS). Especially WT1-driven tumors follow a stereotypical pathway of germline WT1 mutations becoming homozygous in renal precursor lesions through 11p LOH, which concomitantly activates imprinted IGF2 expression, with subsequent WNT pathway activation leading to tumor growth. There is a high rate of multicentric tumors, which may have previously been missed in unilateral tumors. While Wilms tumor predisposition genes relied on somatic inactivation of the second allele, this was different for general cancer predisposition genes. The latter cases were often associated with additional oncogenic alterations, similar to tumors with epigenetic predisposition.

Conclusions: We identified two main mechanisms of Wilms tumor predisposition: either germline genetic alterations of Wilms tumor and, less frequently, general cancer genes; or postzygotic mosaic imprinting defects activating IGF2. These findings inform future genetic screening and risk assessment of affected children and lend support to liquid biopsy screening for enhanced therapeutic stratification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信