Miao Yang, Yan Liu, Zhilin Zhong, Yue Ou, Mingyong Wang, Yingbin Zhong, Chao Liu
{"title":"Roraa对Per2的直接调控:斑马鱼昼夜节律和代谢相互作用的见解。","authors":"Miao Yang, Yan Liu, Zhilin Zhong, Yue Ou, Mingyong Wang, Yingbin Zhong, Chao Liu","doi":"10.1007/s00018-025-05696-8","DOIUrl":null,"url":null,"abstract":"<p><p>Circadian rhythms are fundamental for regulating physiological processes in organisms, with disruptions often linked to metabolic disorders. This study investigated the role of the roraa gene in zebrafish, particularly its influence on circadian rhythms and metabolic regulation. Using quantitative PCR and in situ hybridization, we confirmed the rhythmic expression of roraa and explored its oscillatory mechanisms. The construction of roraa knockout mutants revealed that the absence of roraa disrupts circadian clock function, as evidenced by the reduced expression of core clock genes and altered behavioral rhythms, while the transgenic zebrafish lines which overexpress roraa just have opposite results. Additionally, we demonstrated that Roraa directly regulates per2 expression through the RORE element in its promoter. Furthermore, the transcriptome analysis and quantitative PCR indicated that the metabolism related genes, especially lipid metabolism related genes were obviously changed in roraa-/- mutants compare with WT. Our findings underscore the critical role of Roraa in coordinating circadian and metabolic processes, providing insights into potential therapeutic targets for addressing metabolic disorders related to circadian disruption.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"195"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Direct regulation of Per2 by Roraa: insights into circadian and metabolic interplay in zebrafish.\",\"authors\":\"Miao Yang, Yan Liu, Zhilin Zhong, Yue Ou, Mingyong Wang, Yingbin Zhong, Chao Liu\",\"doi\":\"10.1007/s00018-025-05696-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circadian rhythms are fundamental for regulating physiological processes in organisms, with disruptions often linked to metabolic disorders. This study investigated the role of the roraa gene in zebrafish, particularly its influence on circadian rhythms and metabolic regulation. Using quantitative PCR and in situ hybridization, we confirmed the rhythmic expression of roraa and explored its oscillatory mechanisms. The construction of roraa knockout mutants revealed that the absence of roraa disrupts circadian clock function, as evidenced by the reduced expression of core clock genes and altered behavioral rhythms, while the transgenic zebrafish lines which overexpress roraa just have opposite results. Additionally, we demonstrated that Roraa directly regulates per2 expression through the RORE element in its promoter. Furthermore, the transcriptome analysis and quantitative PCR indicated that the metabolism related genes, especially lipid metabolism related genes were obviously changed in roraa-/- mutants compare with WT. Our findings underscore the critical role of Roraa in coordinating circadian and metabolic processes, providing insights into potential therapeutic targets for addressing metabolic disorders related to circadian disruption.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"82 1\",\"pages\":\"195\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-025-05696-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05696-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Direct regulation of Per2 by Roraa: insights into circadian and metabolic interplay in zebrafish.
Circadian rhythms are fundamental for regulating physiological processes in organisms, with disruptions often linked to metabolic disorders. This study investigated the role of the roraa gene in zebrafish, particularly its influence on circadian rhythms and metabolic regulation. Using quantitative PCR and in situ hybridization, we confirmed the rhythmic expression of roraa and explored its oscillatory mechanisms. The construction of roraa knockout mutants revealed that the absence of roraa disrupts circadian clock function, as evidenced by the reduced expression of core clock genes and altered behavioral rhythms, while the transgenic zebrafish lines which overexpress roraa just have opposite results. Additionally, we demonstrated that Roraa directly regulates per2 expression through the RORE element in its promoter. Furthermore, the transcriptome analysis and quantitative PCR indicated that the metabolism related genes, especially lipid metabolism related genes were obviously changed in roraa-/- mutants compare with WT. Our findings underscore the critical role of Roraa in coordinating circadian and metabolic processes, providing insights into potential therapeutic targets for addressing metabolic disorders related to circadian disruption.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered