{"title":"MORC2通过细胞周期加速和免疫微环境改变促进胆管癌的进展。","authors":"Shizhuan Huang, Zhizhou Li, Haotian Wu, Daowei Tang, Zhanyi Xiao, Yongji Liu, Xiaowei Jing, Sheng Tai, Guanqun Liao","doi":"10.14715/cmb/2025.71.4.15","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored a novel therapeutic target, MORC2 (Microrchidia family CW-type zinc finger 2), for patients with unresectable advanced Cholangiocarcinoma (CCA), a lethal epithelial cell malignancy lacking effective treatments. Utilizing bioinformatics analysis, we examined MORC2's role in CCA progression. The focus was on its association with the cell cycle and its involvement in the tumor's immunosuppressive microenvironment. MORC2 was found to accelerate CCA cell proliferation by promoting cell cycle progression through the activation of TNF-α signaling via the NFKB signaling pathway. Furthermore, the downregulation of MORC2 induced cell cycle arrest and might facilitate neutrophil infiltration by upregulating CCL3, indicating its pivotal role in modifying the immunosuppressive tumor microenvironment. Our findings suggest that MORC2 plays a crucial role in both the proliferation of CCA cells and the modification of the tumor microenvironment. Targeting MORC2 presents a novel potential therapeutic approach for patients with advanced CCA.</p>","PeriodicalId":9802,"journal":{"name":"Cellular and molecular biology","volume":"71 4","pages":"120-127"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MORC2 facilitates cholangiocarcinoma progression through cell cycle acceleration and immune microenvironment modification.\",\"authors\":\"Shizhuan Huang, Zhizhou Li, Haotian Wu, Daowei Tang, Zhanyi Xiao, Yongji Liu, Xiaowei Jing, Sheng Tai, Guanqun Liao\",\"doi\":\"10.14715/cmb/2025.71.4.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explored a novel therapeutic target, MORC2 (Microrchidia family CW-type zinc finger 2), for patients with unresectable advanced Cholangiocarcinoma (CCA), a lethal epithelial cell malignancy lacking effective treatments. Utilizing bioinformatics analysis, we examined MORC2's role in CCA progression. The focus was on its association with the cell cycle and its involvement in the tumor's immunosuppressive microenvironment. MORC2 was found to accelerate CCA cell proliferation by promoting cell cycle progression through the activation of TNF-α signaling via the NFKB signaling pathway. Furthermore, the downregulation of MORC2 induced cell cycle arrest and might facilitate neutrophil infiltration by upregulating CCL3, indicating its pivotal role in modifying the immunosuppressive tumor microenvironment. Our findings suggest that MORC2 plays a crucial role in both the proliferation of CCA cells and the modification of the tumor microenvironment. Targeting MORC2 presents a novel potential therapeutic approach for patients with advanced CCA.</p>\",\"PeriodicalId\":9802,\"journal\":{\"name\":\"Cellular and molecular biology\",\"volume\":\"71 4\",\"pages\":\"120-127\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and molecular biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.14715/cmb/2025.71.4.15\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14715/cmb/2025.71.4.15","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究探索了一种新的治疗靶点MORC2 (Microrchidia family CW-type zinc finger 2),用于不可切除的晚期胆管癌(CCA)患者,这是一种缺乏有效治疗的致死性上皮细胞恶性肿瘤。利用生物信息学分析,我们研究了MORC2在CCA进展中的作用。重点是它与细胞周期的关联,以及它参与肿瘤的免疫抑制微环境。MORC2通过NFKB信号通路激活TNF-α信号通路,促进细胞周期进程,从而加速CCA细胞增殖。此外,下调MORC2诱导细胞周期阻滞,并可能通过上调CCL3促进中性粒细胞浸润,提示其在调节免疫抑制肿瘤微环境中起关键作用。我们的研究结果表明,MORC2在CCA细胞的增殖和肿瘤微环境的改变中都起着至关重要的作用。靶向MORC2为晚期CCA患者提供了一种新的潜在治疗方法。
MORC2 facilitates cholangiocarcinoma progression through cell cycle acceleration and immune microenvironment modification.
This study explored a novel therapeutic target, MORC2 (Microrchidia family CW-type zinc finger 2), for patients with unresectable advanced Cholangiocarcinoma (CCA), a lethal epithelial cell malignancy lacking effective treatments. Utilizing bioinformatics analysis, we examined MORC2's role in CCA progression. The focus was on its association with the cell cycle and its involvement in the tumor's immunosuppressive microenvironment. MORC2 was found to accelerate CCA cell proliferation by promoting cell cycle progression through the activation of TNF-α signaling via the NFKB signaling pathway. Furthermore, the downregulation of MORC2 induced cell cycle arrest and might facilitate neutrophil infiltration by upregulating CCL3, indicating its pivotal role in modifying the immunosuppressive tumor microenvironment. Our findings suggest that MORC2 plays a crucial role in both the proliferation of CCA cells and the modification of the tumor microenvironment. Targeting MORC2 presents a novel potential therapeutic approach for patients with advanced CCA.
期刊介绍:
Cellular and Molecular Biology publishes original articles, reviews, short communications, methods, meta-analysis notes, letters to editor and comments in the interdisciplinary science of Cellular and Molecular Biology linking and integrating molecular biology, biophysics, biochemistry, enzymology, physiology and biotechnology in a dynamic cell and tissue biology environment, applied to human, animals, plants tissues as well to microbial and viral cells. The journal Cellular and Molecular Biology is therefore open to intense interdisciplinary exchanges in medical, dental, veterinary, pharmacological, botanical and biological researches for the demonstration of these multiple links.