Jung Hyun Um, Yueyuan Zheng, Qiong Mao, Chehyun Nam, Hua Zhao, Yoon Woo Koh, Su-Jin Shin, Young Min Park, De-Chen Lin
{"title":"基因组和单细胞分析表征患者来源的肿瘤类器官,以实现头颈部鳞状细胞癌的个性化治疗。","authors":"Jung Hyun Um, Yueyuan Zheng, Qiong Mao, Chehyun Nam, Hua Zhao, Yoon Woo Koh, Su-Jin Shin, Young Min Park, De-Chen Lin","doi":"10.1158/0008-5472.CAN-24-2850","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) remains a significant health burden because of tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. In this study, we enrolled 31 patients with HNSCC for the establishment of patient-derived tumor organoids (PDO), which faithfully maintained the genomic features and histopathologic traits of the primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, with ex vivo drug sensitivity correlating with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor transcriptional heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition-like ITH program was associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin as a potential regulator of the hybrid epithelial-mesenchymal state. Moreover, amphiregulin contributed to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.</p><p><strong>Significance: </strong>Profiling of patient-derived organoids uncovers intertumoral heterogeneity and a hybrid epithelial-mesenchymal transition program conferring cisplatin resistance and highlights amphiregulin as a regulator of cellular plasticity and potential therapeutic target for HNSCC treatment.</p>","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":" ","pages":"2726-2742"},"PeriodicalIF":16.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic and Single-Cell Analyses Characterize Patient-Derived Tumor Organoids to Enable Personalized Therapy for Head and Neck Squamous Cell Carcinoma.\",\"authors\":\"Jung Hyun Um, Yueyuan Zheng, Qiong Mao, Chehyun Nam, Hua Zhao, Yoon Woo Koh, Su-Jin Shin, Young Min Park, De-Chen Lin\",\"doi\":\"10.1158/0008-5472.CAN-24-2850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head and neck squamous cell carcinoma (HNSCC) remains a significant health burden because of tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. In this study, we enrolled 31 patients with HNSCC for the establishment of patient-derived tumor organoids (PDO), which faithfully maintained the genomic features and histopathologic traits of the primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, with ex vivo drug sensitivity correlating with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor transcriptional heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition-like ITH program was associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin as a potential regulator of the hybrid epithelial-mesenchymal state. Moreover, amphiregulin contributed to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.</p><p><strong>Significance: </strong>Profiling of patient-derived organoids uncovers intertumoral heterogeneity and a hybrid epithelial-mesenchymal transition program conferring cisplatin resistance and highlights amphiregulin as a regulator of cellular plasticity and potential therapeutic target for HNSCC treatment.</p>\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\" \",\"pages\":\"2726-2742\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.CAN-24-2850\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.CAN-24-2850","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Genomic and Single-Cell Analyses Characterize Patient-Derived Tumor Organoids to Enable Personalized Therapy for Head and Neck Squamous Cell Carcinoma.
Head and neck squamous cell carcinoma (HNSCC) remains a significant health burden because of tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. In this study, we enrolled 31 patients with HNSCC for the establishment of patient-derived tumor organoids (PDO), which faithfully maintained the genomic features and histopathologic traits of the primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, with ex vivo drug sensitivity correlating with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor transcriptional heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition-like ITH program was associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin as a potential regulator of the hybrid epithelial-mesenchymal state. Moreover, amphiregulin contributed to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.
Significance: Profiling of patient-derived organoids uncovers intertumoral heterogeneity and a hybrid epithelial-mesenchymal transition program conferring cisplatin resistance and highlights amphiregulin as a regulator of cellular plasticity and potential therapeutic target for HNSCC treatment.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.