化学电容器装置中超导氢化锂的理论研究。

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Wojciech Grochala, Piotr Szkudlarek, Christopher Renskers, Elena Roxana Margine
{"title":"化学电容器装置中超导氢化锂的理论研究。","authors":"Wojciech Grochala, Piotr Szkudlarek, Christopher Renskers, Elena Roxana Margine","doi":"10.1002/cphc.202500013","DOIUrl":null,"url":null,"abstract":"<p><p>Metallization of the ionic hydride LiH has never been achieved experimentally, even under high external pressure. In this study, we apply a novel \"chemical capacitor\" setup to facilitate its metallization under ambient pressure con- ditions. Our findings reveal that a single layer of this ma- terial can withstand doping levels up to an impressive 0.61 holes per H atom without structural collapse, as demon- strated in the ZrC |LiH |ZrC system. Additionally, the electron-phonon coupling strength (λ) reaches a remarkable value of 2.1 in the TiO |LiH |TiO system, indicative of the strong coupling regime. Superconductivity calculations fur- ther predict a maximum critical temperature (Tc) of 17.5 K for 0.31-hole-doped LiH with (LiBaF3)2 as surrounding sup- port layers in the absence of external pressure.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500013"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconducting lithium hydride in a chemical capacitor setup - a theoretical study.\",\"authors\":\"Wojciech Grochala, Piotr Szkudlarek, Christopher Renskers, Elena Roxana Margine\",\"doi\":\"10.1002/cphc.202500013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metallization of the ionic hydride LiH has never been achieved experimentally, even under high external pressure. In this study, we apply a novel \\\"chemical capacitor\\\" setup to facilitate its metallization under ambient pressure con- ditions. Our findings reveal that a single layer of this ma- terial can withstand doping levels up to an impressive 0.61 holes per H atom without structural collapse, as demon- strated in the ZrC |LiH |ZrC system. Additionally, the electron-phonon coupling strength (λ) reaches a remarkable value of 2.1 in the TiO |LiH |TiO system, indicative of the strong coupling regime. Superconductivity calculations fur- ther predict a maximum critical temperature (Tc) of 17.5 K for 0.31-hole-doped LiH with (LiBaF3)2 as surrounding sup- port layers in the absence of external pressure.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202500013\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500013\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500013","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

离子氢化物LiH的金属化从未在实验中实现,即使在高外部压力下也是如此。在这项研究中,我们采用了一种新的“化学电容器”装置,以促进其在环境压力条件下的金属化。我们的研究结果表明,单层这种材料可以承受高达每个H原子0.61个空穴的掺杂水平而不会发生结构崩溃,正如在ZrC |LiH |ZrC体系中所显示的那样。在TiO |LiH |TiO体系中,电子-声子耦合强度(λ)达到了显著的2.1,表明了强耦合状态。他们的超导性计算预测,在没有外部压力的情况下,以(LiBaF3)2作为周围支撑层的0.31空穴掺杂LiH的最高临界温度(Tc)为17.5 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconducting lithium hydride in a chemical capacitor setup - a theoretical study.

Metallization of the ionic hydride LiH has never been achieved experimentally, even under high external pressure. In this study, we apply a novel "chemical capacitor" setup to facilitate its metallization under ambient pressure con- ditions. Our findings reveal that a single layer of this ma- terial can withstand doping levels up to an impressive 0.61 holes per H atom without structural collapse, as demon- strated in the ZrC |LiH |ZrC system. Additionally, the electron-phonon coupling strength (λ) reaches a remarkable value of 2.1 in the TiO |LiH |TiO system, indicative of the strong coupling regime. Superconductivity calculations fur- ther predict a maximum critical temperature (Tc) of 17.5 K for 0.31-hole-doped LiH with (LiBaF3)2 as surrounding sup- port layers in the absence of external pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信