{"title":"基于机器学习技术的四自身抗体检测用于食管鳞状细胞癌的早期检测:一项多中心、嵌套病例对照研究的回顾性研究","authors":"Yi-Wei Xu, Yu-Hui Peng, Can-Tong Liu, Hao Chen, Ling-Yu Chu, Hai-Lu Chen, Zhi-Yong Wu, Wen-Qiang Wei, Li-Yan Xu, Fang-Cai Wu, En-Min Li","doi":"10.1186/s12916-025-04066-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high diagnostic accuracy for clinical and preclinical esophageal squamous cell carcinoma (ESCC) using machine learning (ML) algorithms.</p><p><strong>Methods: </strong>We identified potential autoantibodies against tumor-associated antigens with serological proteome analysis. Serum autoantibody levels were measured by ELISA. Using a training set (n = 531), 102 models based on ML algorithms were constructed, and Partial Least Squares Generalized Linear Models (plsRglm) was selected out using receiver operating characteristics (ROC), Kolmogorov-Smirnov (K-S) test, and Population Stability Index (PSI), and further validated through an internal validation set (n = 413), external validation set 1 (n = 371), and external validation set 2 (n = 202). Then, we validated the ability of plsRglm model in predicting preclinical ESCC by a nested case-control study (24 preclinical ESCCs and 112 matched controls) within a population-based prospective cohort study.</p><p><strong>Results: </strong>ROC analysis, K-S test, and PSI showed that plsRglm model based on four autoantibodies (ALDOA, ENO1, p53, and NY-ESO-1) exhibited the better diagnostic performance and robustness, which provided a high diagnostic accuracy in diagnosing ESCC with the respective AUCs (sensitivities and specificities) of 0.860 (68.8% and 90.4%) in the training set, 0.826 (65.3% and 89.1%) in the internal validation set, and 0.851 (69.2% and 87.3%) in the external validation set 1. For early-stage ESCC, this signature also maintained diagnostic performance [0.817 (62.3% and 90.4%) in the training set; 0.842 (62.5% and 89.1%) in the internal validation set; 0.854 (63.2% and 87.3%) in the external validation set 1; and 0.850 (67.3% and 90.1%) in the external validation set 2]. In the nested case-control study, this plsRglm model could detect the presence of preclinical ESCC with the AUC of 0.723, sensitivity of 54.2%, and specificity of 86.6%.</p><p><strong>Conclusions: </strong>Our findings indicated that the plsRglm model based on four autoantibodies might help identify preclinical and early-stage ESCC.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"235"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016149/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning technique-based four-autoantibody test for early detection of esophageal squamous cell carcinoma: a multicenter, retrospective study with a nested case-control study.\",\"authors\":\"Yi-Wei Xu, Yu-Hui Peng, Can-Tong Liu, Hao Chen, Ling-Yu Chu, Hai-Lu Chen, Zhi-Yong Wu, Wen-Qiang Wei, Li-Yan Xu, Fang-Cai Wu, En-Min Li\",\"doi\":\"10.1186/s12916-025-04066-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high diagnostic accuracy for clinical and preclinical esophageal squamous cell carcinoma (ESCC) using machine learning (ML) algorithms.</p><p><strong>Methods: </strong>We identified potential autoantibodies against tumor-associated antigens with serological proteome analysis. Serum autoantibody levels were measured by ELISA. Using a training set (n = 531), 102 models based on ML algorithms were constructed, and Partial Least Squares Generalized Linear Models (plsRglm) was selected out using receiver operating characteristics (ROC), Kolmogorov-Smirnov (K-S) test, and Population Stability Index (PSI), and further validated through an internal validation set (n = 413), external validation set 1 (n = 371), and external validation set 2 (n = 202). Then, we validated the ability of plsRglm model in predicting preclinical ESCC by a nested case-control study (24 preclinical ESCCs and 112 matched controls) within a population-based prospective cohort study.</p><p><strong>Results: </strong>ROC analysis, K-S test, and PSI showed that plsRglm model based on four autoantibodies (ALDOA, ENO1, p53, and NY-ESO-1) exhibited the better diagnostic performance and robustness, which provided a high diagnostic accuracy in diagnosing ESCC with the respective AUCs (sensitivities and specificities) of 0.860 (68.8% and 90.4%) in the training set, 0.826 (65.3% and 89.1%) in the internal validation set, and 0.851 (69.2% and 87.3%) in the external validation set 1. For early-stage ESCC, this signature also maintained diagnostic performance [0.817 (62.3% and 90.4%) in the training set; 0.842 (62.5% and 89.1%) in the internal validation set; 0.854 (63.2% and 87.3%) in the external validation set 1; and 0.850 (67.3% and 90.1%) in the external validation set 2]. In the nested case-control study, this plsRglm model could detect the presence of preclinical ESCC with the AUC of 0.723, sensitivity of 54.2%, and specificity of 86.6%.</p><p><strong>Conclusions: </strong>Our findings indicated that the plsRglm model based on four autoantibodies might help identify preclinical and early-stage ESCC.</p>\",\"PeriodicalId\":9188,\"journal\":{\"name\":\"BMC Medicine\",\"volume\":\"23 1\",\"pages\":\"235\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016149/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12916-025-04066-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-04066-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Machine learning technique-based four-autoantibody test for early detection of esophageal squamous cell carcinoma: a multicenter, retrospective study with a nested case-control study.
Background: Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high diagnostic accuracy for clinical and preclinical esophageal squamous cell carcinoma (ESCC) using machine learning (ML) algorithms.
Methods: We identified potential autoantibodies against tumor-associated antigens with serological proteome analysis. Serum autoantibody levels were measured by ELISA. Using a training set (n = 531), 102 models based on ML algorithms were constructed, and Partial Least Squares Generalized Linear Models (plsRglm) was selected out using receiver operating characteristics (ROC), Kolmogorov-Smirnov (K-S) test, and Population Stability Index (PSI), and further validated through an internal validation set (n = 413), external validation set 1 (n = 371), and external validation set 2 (n = 202). Then, we validated the ability of plsRglm model in predicting preclinical ESCC by a nested case-control study (24 preclinical ESCCs and 112 matched controls) within a population-based prospective cohort study.
Results: ROC analysis, K-S test, and PSI showed that plsRglm model based on four autoantibodies (ALDOA, ENO1, p53, and NY-ESO-1) exhibited the better diagnostic performance and robustness, which provided a high diagnostic accuracy in diagnosing ESCC with the respective AUCs (sensitivities and specificities) of 0.860 (68.8% and 90.4%) in the training set, 0.826 (65.3% and 89.1%) in the internal validation set, and 0.851 (69.2% and 87.3%) in the external validation set 1. For early-stage ESCC, this signature also maintained diagnostic performance [0.817 (62.3% and 90.4%) in the training set; 0.842 (62.5% and 89.1%) in the internal validation set; 0.854 (63.2% and 87.3%) in the external validation set 1; and 0.850 (67.3% and 90.1%) in the external validation set 2]. In the nested case-control study, this plsRglm model could detect the presence of preclinical ESCC with the AUC of 0.723, sensitivity of 54.2%, and specificity of 86.6%.
Conclusions: Our findings indicated that the plsRglm model based on four autoantibodies might help identify preclinical and early-stage ESCC.
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.