Haicheng Li, Junhua Niu, Yalan Sheng, Yifan Liu, Shan Gao
{"title":"SMAC:利用SMRT CCS数据在单分子水平上鉴定DNA n6 -甲基腺嘌呤(6mA)。","authors":"Haicheng Li, Junhua Niu, Yalan Sheng, Yifan Liu, Shan Gao","doi":"10.1093/bib/bbaf153","DOIUrl":null,"url":null,"abstract":"<p><p>DNA modifications, such as N6-methyladenine (6mA), play important roles in various processes in eukaryotes. Single-molecule, real-time (SMRT) sequencing enables the direct detection of DNA modifications without requiring special sample preparation. However, most SMRT-based studies of 6mA rely on ensemble-level consensus by combining multiple reads covering the same genomic position, which misses the single-molecule heterogeneity. While recent methods have aimed at single-molecule level detection of 6mA, limitations in sequencing platforms, resolution, accuracy, and usability restrict their application in comprehensive epigenetic studies. Here, we present SMAC (single-molecule 6mA analysis of CCS reads), a novel framework for accurately detecting 6mA at the single-molecule level using SMRT circular consensus sequencing (CCS) data from the Sequel II system. It is an automated method that streamlines the entire workflow by packaging both existing softwares and built-in scripts, with user-defined parameters to allow easy adaptation for various studies. By utilizing the statistical distribution characteristics of enzyme kinetic indicators on single DNA molecules rather than a fixed cutoff, SMAC significantly improves 6mA detection accuracy at the single-nucleotide and single-molecule levels. It simplifies analysis by providing comprehensive information, including quality control, statistical analysis, and site visualization, directly from raw sequencing data. SMAC is a powerful new tool that enables de novo detection of 6mA and empowers investigation of its functions in modulating physiological processes.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980416/pdf/","citationCount":"0","resultStr":"{\"title\":\"SMAC: identifying DNA N6-methyladenine (6mA) at the single-molecule level using SMRT CCS data.\",\"authors\":\"Haicheng Li, Junhua Niu, Yalan Sheng, Yifan Liu, Shan Gao\",\"doi\":\"10.1093/bib/bbaf153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA modifications, such as N6-methyladenine (6mA), play important roles in various processes in eukaryotes. Single-molecule, real-time (SMRT) sequencing enables the direct detection of DNA modifications without requiring special sample preparation. However, most SMRT-based studies of 6mA rely on ensemble-level consensus by combining multiple reads covering the same genomic position, which misses the single-molecule heterogeneity. While recent methods have aimed at single-molecule level detection of 6mA, limitations in sequencing platforms, resolution, accuracy, and usability restrict their application in comprehensive epigenetic studies. Here, we present SMAC (single-molecule 6mA analysis of CCS reads), a novel framework for accurately detecting 6mA at the single-molecule level using SMRT circular consensus sequencing (CCS) data from the Sequel II system. It is an automated method that streamlines the entire workflow by packaging both existing softwares and built-in scripts, with user-defined parameters to allow easy adaptation for various studies. By utilizing the statistical distribution characteristics of enzyme kinetic indicators on single DNA molecules rather than a fixed cutoff, SMAC significantly improves 6mA detection accuracy at the single-nucleotide and single-molecule levels. It simplifies analysis by providing comprehensive information, including quality control, statistical analysis, and site visualization, directly from raw sequencing data. SMAC is a powerful new tool that enables de novo detection of 6mA and empowers investigation of its functions in modulating physiological processes.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf153\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf153","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SMAC: identifying DNA N6-methyladenine (6mA) at the single-molecule level using SMRT CCS data.
DNA modifications, such as N6-methyladenine (6mA), play important roles in various processes in eukaryotes. Single-molecule, real-time (SMRT) sequencing enables the direct detection of DNA modifications without requiring special sample preparation. However, most SMRT-based studies of 6mA rely on ensemble-level consensus by combining multiple reads covering the same genomic position, which misses the single-molecule heterogeneity. While recent methods have aimed at single-molecule level detection of 6mA, limitations in sequencing platforms, resolution, accuracy, and usability restrict their application in comprehensive epigenetic studies. Here, we present SMAC (single-molecule 6mA analysis of CCS reads), a novel framework for accurately detecting 6mA at the single-molecule level using SMRT circular consensus sequencing (CCS) data from the Sequel II system. It is an automated method that streamlines the entire workflow by packaging both existing softwares and built-in scripts, with user-defined parameters to allow easy adaptation for various studies. By utilizing the statistical distribution characteristics of enzyme kinetic indicators on single DNA molecules rather than a fixed cutoff, SMAC significantly improves 6mA detection accuracy at the single-nucleotide and single-molecule levels. It simplifies analysis by providing comprehensive information, including quality control, statistical analysis, and site visualization, directly from raw sequencing data. SMAC is a powerful new tool that enables de novo detection of 6mA and empowers investigation of its functions in modulating physiological processes.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.