{"title":"9-十六烯酸通过靶向PTPN1/FTH1信号抑制胃癌的侵袭性。","authors":"Xin Wang, Haiyan Peng","doi":"10.1097/CAD.0000000000001724","DOIUrl":null,"url":null,"abstract":"<p><p>9-Hexadecenoic acid (9-HA) possesses anti-tumor properties. However, the effects of 9-HA on gastric cancer are scarcely reported. The present study aimed to investigate the effects of 9-HA on gastric cancer. mRNA levels were detected by reverse transcription quantitative PCR. Protein expression was detected by western blot. Cell behaviors were analyzed using Cell Counting Kit-8, colony formation, transwell, and propidium iodide staining assays. Co-localization of PTPN1 and FTH1 was determined using fluorescence in situ hybridization assay. In vivo assay was conducted to further verify the effects of 9-HA on gastric cancer. 9-HA suppressed the malignant behavior of gastric cancer. Moreover, 9-HA promoted iron-overload-dependent ferroptosis of gastric cancer in vivo and in vitro. Traditional Chinese medicine systems pharmacology predicted that 9-HA could target PTPN1, which was upregulated in gastric cancer cells. PTPN1-mediated phosphorylation of FTH1 contributed to the latter degradation. Overexpressed PTPN1 alleviated the effects of 9-HA, promoting the aggressiveness of gastric cancer and suppressing tumor cell ferroptosis. Interestingly, overexpressed PTPN1 antagonized the effects of 9-HA, promoted tumor growth, and inhibited the ferroptosis of gastric cancer. In summary, 9-HA-mediated downregulation of PTPN1 drives ferroptosis and inhibit the aggressiveness of gastric cancer. Thence, 9-HA may be an alternative strategy for gastric cancer.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"9-Hexadecenoic acid inhibits the aggressiveness of gastric cancer via targeting PTPN1/FTH1 signaling.\",\"authors\":\"Xin Wang, Haiyan Peng\",\"doi\":\"10.1097/CAD.0000000000001724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>9-Hexadecenoic acid (9-HA) possesses anti-tumor properties. However, the effects of 9-HA on gastric cancer are scarcely reported. The present study aimed to investigate the effects of 9-HA on gastric cancer. mRNA levels were detected by reverse transcription quantitative PCR. Protein expression was detected by western blot. Cell behaviors were analyzed using Cell Counting Kit-8, colony formation, transwell, and propidium iodide staining assays. Co-localization of PTPN1 and FTH1 was determined using fluorescence in situ hybridization assay. In vivo assay was conducted to further verify the effects of 9-HA on gastric cancer. 9-HA suppressed the malignant behavior of gastric cancer. Moreover, 9-HA promoted iron-overload-dependent ferroptosis of gastric cancer in vivo and in vitro. Traditional Chinese medicine systems pharmacology predicted that 9-HA could target PTPN1, which was upregulated in gastric cancer cells. PTPN1-mediated phosphorylation of FTH1 contributed to the latter degradation. Overexpressed PTPN1 alleviated the effects of 9-HA, promoting the aggressiveness of gastric cancer and suppressing tumor cell ferroptosis. Interestingly, overexpressed PTPN1 antagonized the effects of 9-HA, promoted tumor growth, and inhibited the ferroptosis of gastric cancer. In summary, 9-HA-mediated downregulation of PTPN1 drives ferroptosis and inhibit the aggressiveness of gastric cancer. Thence, 9-HA may be an alternative strategy for gastric cancer.</p>\",\"PeriodicalId\":7969,\"journal\":{\"name\":\"Anti-Cancer Drugs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-Cancer Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CAD.0000000000001724\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001724","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
9-Hexadecenoic acid inhibits the aggressiveness of gastric cancer via targeting PTPN1/FTH1 signaling.
9-Hexadecenoic acid (9-HA) possesses anti-tumor properties. However, the effects of 9-HA on gastric cancer are scarcely reported. The present study aimed to investigate the effects of 9-HA on gastric cancer. mRNA levels were detected by reverse transcription quantitative PCR. Protein expression was detected by western blot. Cell behaviors were analyzed using Cell Counting Kit-8, colony formation, transwell, and propidium iodide staining assays. Co-localization of PTPN1 and FTH1 was determined using fluorescence in situ hybridization assay. In vivo assay was conducted to further verify the effects of 9-HA on gastric cancer. 9-HA suppressed the malignant behavior of gastric cancer. Moreover, 9-HA promoted iron-overload-dependent ferroptosis of gastric cancer in vivo and in vitro. Traditional Chinese medicine systems pharmacology predicted that 9-HA could target PTPN1, which was upregulated in gastric cancer cells. PTPN1-mediated phosphorylation of FTH1 contributed to the latter degradation. Overexpressed PTPN1 alleviated the effects of 9-HA, promoting the aggressiveness of gastric cancer and suppressing tumor cell ferroptosis. Interestingly, overexpressed PTPN1 antagonized the effects of 9-HA, promoted tumor growth, and inhibited the ferroptosis of gastric cancer. In summary, 9-HA-mediated downregulation of PTPN1 drives ferroptosis and inhibit the aggressiveness of gastric cancer. Thence, 9-HA may be an alternative strategy for gastric cancer.
期刊介绍:
Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.