Zeyu Xia, Canqun Yang, Chenchen Peng, Yifei Guo, Yufei Guo, Tao Tang, Yingbo Cui
{"title":"具有多级并行的快速噪声长读对齐。","authors":"Zeyu Xia, Canqun Yang, Chenchen Peng, Yifei Guo, Yufei Guo, Tao Tang, Yingbo Cui","doi":"10.1186/s12859-025-06129-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The advent of Single Molecule Real-Time (SMRT) sequencing has overcome many limitations of second-generation sequencing, such as limited read lengths, PCR amplification biases. However, longer reads increase data volume exponentially and high error rates make many existing alignment tools inapplicable. Additionally, a single CPU's performance bottleneck restricts the effectiveness of alignment algorithms for SMRT sequencing.</p><p><strong>Results: </strong>To address these challenges, we introduce ParaHAT, a parallel alignment algorithm for noisy long reads. ParaHAT utilizes vector-level, thread-level, process-level, and heterogeneous parallelism. We redesign the dynamic programming matrices layouts to eliminate data dependency in the base-level alignment, enabling effective vectorization. We further enhance computational speed through heterogeneous parallel technology and implement the algorithm for multi-node computing using MPI, overcoming the computational limits of a single node.</p><p><strong>Conclusions: </strong>Performance evaluations show that ParaHAT got a 10.03x speedup in base-level alignment, with a parallel acceleration ratio and weak scalability metric of 94.61 and 98.98% on 128 nodes, respectively.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"118"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fast noisy long read alignment with multi-level parallelism.\",\"authors\":\"Zeyu Xia, Canqun Yang, Chenchen Peng, Yifei Guo, Yufei Guo, Tao Tang, Yingbo Cui\",\"doi\":\"10.1186/s12859-025-06129-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The advent of Single Molecule Real-Time (SMRT) sequencing has overcome many limitations of second-generation sequencing, such as limited read lengths, PCR amplification biases. However, longer reads increase data volume exponentially and high error rates make many existing alignment tools inapplicable. Additionally, a single CPU's performance bottleneck restricts the effectiveness of alignment algorithms for SMRT sequencing.</p><p><strong>Results: </strong>To address these challenges, we introduce ParaHAT, a parallel alignment algorithm for noisy long reads. ParaHAT utilizes vector-level, thread-level, process-level, and heterogeneous parallelism. We redesign the dynamic programming matrices layouts to eliminate data dependency in the base-level alignment, enabling effective vectorization. We further enhance computational speed through heterogeneous parallel technology and implement the algorithm for multi-node computing using MPI, overcoming the computational limits of a single node.</p><p><strong>Conclusions: </strong>Performance evaluations show that ParaHAT got a 10.03x speedup in base-level alignment, with a parallel acceleration ratio and weak scalability metric of 94.61 and 98.98% on 128 nodes, respectively.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"118\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12049014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06129-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06129-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Fast noisy long read alignment with multi-level parallelism.
Background: The advent of Single Molecule Real-Time (SMRT) sequencing has overcome many limitations of second-generation sequencing, such as limited read lengths, PCR amplification biases. However, longer reads increase data volume exponentially and high error rates make many existing alignment tools inapplicable. Additionally, a single CPU's performance bottleneck restricts the effectiveness of alignment algorithms for SMRT sequencing.
Results: To address these challenges, we introduce ParaHAT, a parallel alignment algorithm for noisy long reads. ParaHAT utilizes vector-level, thread-level, process-level, and heterogeneous parallelism. We redesign the dynamic programming matrices layouts to eliminate data dependency in the base-level alignment, enabling effective vectorization. We further enhance computational speed through heterogeneous parallel technology and implement the algorithm for multi-node computing using MPI, overcoming the computational limits of a single node.
Conclusions: Performance evaluations show that ParaHAT got a 10.03x speedup in base-level alignment, with a parallel acceleration ratio and weak scalability metric of 94.61 and 98.98% on 128 nodes, respectively.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.