卵巢癌和胃肠癌腹水中微生物衍生代谢物的鉴定及其影响。

IF 5.3 3区 医学 Q1 CELL BIOLOGY
Sisi Deng, Wooyong Kim, Kefan Cheng, Qianlu Yang, Yogesh Singh, Gyuntae Bae, Nicolas Bézière, Lukas Mager, Stefan Kommoss, Jannik Sprengel, Christoph Trautwein
{"title":"卵巢癌和胃肠癌腹水中微生物衍生代谢物的鉴定及其影响。","authors":"Sisi Deng, Wooyong Kim, Kefan Cheng, Qianlu Yang, Yogesh Singh, Gyuntae Bae, Nicolas Bézière, Lukas Mager, Stefan Kommoss, Jannik Sprengel, Christoph Trautwein","doi":"10.1186/s40170-025-00391-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malignant ascites is a common complication of advanced ovarian cancer (OC) and gastrointestinal cancer (GI), significantly impacting metastasis, quality of life, and survival. Increased intestinal permeability can lead to blood or lymphatic infiltration and microbial translocation from the gastrointestinal or uterine tract. This study aimed to identify microbiota-derived metabolites in ascites from OC (stages II-III and IV) and GI patients, assessing their roles in tumor progression.</p><p><strong>Methods: </strong>Malignant ascites samples from 18 OC and GI patients were analyzed using a four-dimensional (4D) untargeted metabolomics approach combining reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with trapped ion mobility spectrometry time-of-flight mass spectrometry (timsTOF-MS). Additonally, a targeted flow cytometry-based cytokine panel was used to screen for inflammatory markers. Non-endogenous, microbiota-derived metabolites were identified through the Human Microbial Metabolome Database (MiMeDB).</p><p><strong>Results: </strong>OC stage IV exhibited metabolic profiles similar to GI cancers, while OC stage II-III differed significantly. Stage IV OC patients exhibited higher levels of 11 typically microbiome-derived metabolites, including 1-methylhistidine, 3-hydroxyanthranilic acid, 4-pyridoxic acid, biliverdin, butyryl-L-carnitine, hydroxypropionic acid, indole, lysophosphatidylinositol 18:1 (LPI 18:1), mevalonic acid, N-acetyl-L-phenylalanine, and nudifloramide, and lower levels of 5 metabolites, including benzyl alcohol, naringenin, o-cresol, octadecanedioic acid, and phenol, compared to stage II-III. Correlation analysis revealed positive associations between IL-10 and metabolites such as glucosamine and LPCs, while MCP-1 positively correlated with benzyl alcohol and phenol.</p><p><strong>Conclusion: </strong>4D metabolomics revealed distinct metabolic signatures in OC and GI ascites, highlighting microbiota-derived metabolites involved in lipid metabolism and inflammation. Metabolites like 3-hydroxyanthranilic acid, indole, and naringenin may serve as markers of disease progression and underscore the microbiota's role in shaping malignant ascites and tumor biology.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"21"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076955/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and impact of microbiota-derived metabolites in ascites of ovarian and gastrointestinal cancer.\",\"authors\":\"Sisi Deng, Wooyong Kim, Kefan Cheng, Qianlu Yang, Yogesh Singh, Gyuntae Bae, Nicolas Bézière, Lukas Mager, Stefan Kommoss, Jannik Sprengel, Christoph Trautwein\",\"doi\":\"10.1186/s40170-025-00391-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Malignant ascites is a common complication of advanced ovarian cancer (OC) and gastrointestinal cancer (GI), significantly impacting metastasis, quality of life, and survival. Increased intestinal permeability can lead to blood or lymphatic infiltration and microbial translocation from the gastrointestinal or uterine tract. This study aimed to identify microbiota-derived metabolites in ascites from OC (stages II-III and IV) and GI patients, assessing their roles in tumor progression.</p><p><strong>Methods: </strong>Malignant ascites samples from 18 OC and GI patients were analyzed using a four-dimensional (4D) untargeted metabolomics approach combining reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with trapped ion mobility spectrometry time-of-flight mass spectrometry (timsTOF-MS). Additonally, a targeted flow cytometry-based cytokine panel was used to screen for inflammatory markers. Non-endogenous, microbiota-derived metabolites were identified through the Human Microbial Metabolome Database (MiMeDB).</p><p><strong>Results: </strong>OC stage IV exhibited metabolic profiles similar to GI cancers, while OC stage II-III differed significantly. Stage IV OC patients exhibited higher levels of 11 typically microbiome-derived metabolites, including 1-methylhistidine, 3-hydroxyanthranilic acid, 4-pyridoxic acid, biliverdin, butyryl-L-carnitine, hydroxypropionic acid, indole, lysophosphatidylinositol 18:1 (LPI 18:1), mevalonic acid, N-acetyl-L-phenylalanine, and nudifloramide, and lower levels of 5 metabolites, including benzyl alcohol, naringenin, o-cresol, octadecanedioic acid, and phenol, compared to stage II-III. Correlation analysis revealed positive associations between IL-10 and metabolites such as glucosamine and LPCs, while MCP-1 positively correlated with benzyl alcohol and phenol.</p><p><strong>Conclusion: </strong>4D metabolomics revealed distinct metabolic signatures in OC and GI ascites, highlighting microbiota-derived metabolites involved in lipid metabolism and inflammation. Metabolites like 3-hydroxyanthranilic acid, indole, and naringenin may serve as markers of disease progression and underscore the microbiota's role in shaping malignant ascites and tumor biology.</p>\",\"PeriodicalId\":9418,\"journal\":{\"name\":\"Cancer & Metabolism\",\"volume\":\"13 1\",\"pages\":\"21\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076955/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40170-025-00391-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00391-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:恶性腹水是晚期卵巢癌(OC)和胃肠道癌(GI)的常见并发症,严重影响转移、生活质量和生存。肠道通透性增加可导致血液或淋巴浸润和微生物从胃肠道或子宫转移。本研究旨在鉴定OC (II-III期和IV期)和GI患者腹水中微生物衍生代谢物,评估其在肿瘤进展中的作用。方法:采用反相(RP)、亲水相互作用液相色谱(HILIC)和捕获离子迁移率谱法(timsTOF-MS)相结合的四维非靶向代谢组学方法,对18例OC和GI患者的恶性腹水样本进行分析。此外,基于流式细胞术的靶向细胞因子面板用于筛选炎症标志物。通过人类微生物代谢组数据库(MiMeDB)鉴定非内源性微生物衍生代谢物。结果:IV期OC表现出与GI癌症相似的代谢谱,而II-III期OC差异显著。与II-III期相比,IV期OC患者的11种典型微生物衍生代谢物水平较高,包括1-甲基组氨酸、3-羟基苯甲酸、4-吡啶酸、胆绿素、丁基- l-肉碱、羟基丙酸、吲哚、溶血磷脂酰肌醇18:1 (LPI 18:1)、甲羟酸、n -乙酰- l-苯丙氨酸和nudifloramide,而5种代谢物水平较低,包括苯甲醇、柚皮素、邻甲酚、十八烯二酸和苯酚。相关分析显示,IL-10与葡萄糖胺、LPCs等代谢物呈正相关,MCP-1与苯甲醇、苯酚呈正相关。结论:4D代谢组学揭示了OC和GI腹水中不同的代谢特征,突出了参与脂质代谢和炎症的微生物来源代谢产物。代谢物如3-羟基苯甲酸、吲哚和柚皮素可能作为疾病进展的标志,并强调微生物群在形成恶性腹水和肿瘤生物学中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and impact of microbiota-derived metabolites in ascites of ovarian and gastrointestinal cancer.

Background: Malignant ascites is a common complication of advanced ovarian cancer (OC) and gastrointestinal cancer (GI), significantly impacting metastasis, quality of life, and survival. Increased intestinal permeability can lead to blood or lymphatic infiltration and microbial translocation from the gastrointestinal or uterine tract. This study aimed to identify microbiota-derived metabolites in ascites from OC (stages II-III and IV) and GI patients, assessing their roles in tumor progression.

Methods: Malignant ascites samples from 18 OC and GI patients were analyzed using a four-dimensional (4D) untargeted metabolomics approach combining reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with trapped ion mobility spectrometry time-of-flight mass spectrometry (timsTOF-MS). Additonally, a targeted flow cytometry-based cytokine panel was used to screen for inflammatory markers. Non-endogenous, microbiota-derived metabolites were identified through the Human Microbial Metabolome Database (MiMeDB).

Results: OC stage IV exhibited metabolic profiles similar to GI cancers, while OC stage II-III differed significantly. Stage IV OC patients exhibited higher levels of 11 typically microbiome-derived metabolites, including 1-methylhistidine, 3-hydroxyanthranilic acid, 4-pyridoxic acid, biliverdin, butyryl-L-carnitine, hydroxypropionic acid, indole, lysophosphatidylinositol 18:1 (LPI 18:1), mevalonic acid, N-acetyl-L-phenylalanine, and nudifloramide, and lower levels of 5 metabolites, including benzyl alcohol, naringenin, o-cresol, octadecanedioic acid, and phenol, compared to stage II-III. Correlation analysis revealed positive associations between IL-10 and metabolites such as glucosamine and LPCs, while MCP-1 positively correlated with benzyl alcohol and phenol.

Conclusion: 4D metabolomics revealed distinct metabolic signatures in OC and GI ascites, highlighting microbiota-derived metabolites involved in lipid metabolism and inflammation. Metabolites like 3-hydroxyanthranilic acid, indole, and naringenin may serve as markers of disease progression and underscore the microbiota's role in shaping malignant ascites and tumor biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信