{"title":"有袋动物和单目动物的基因定位,V.鸭嘴兽次黄嘌呤磷酸核糖基转移酶和磷酸甘油激酶的同质性。","authors":"J M Watson, J A Graves","doi":"10.1071/bi9880231","DOIUrl":null,"url":null,"abstract":"<p><p>In order to extend comparative mapping studies to the monotreme mammals (subclass Prototheria), somatic-cell hybrids were obtained between Chinese-hamster cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) and platypus fibroblasts. The characteristics of these hybrids closely resemble those of metatherian x eutherian hybrids, in that they are recovered at low frequency and they rapidly segregate and fragment platypus chromosomes. Biochemical and cytological studies of the hybrids, their subclones and HPRT-deficient revertants indicate that phosphoglycerate kinase is syntenic with HPRT in the platypus (as it is in other mammals); however, the studies do not permit chromosomal assignment of the syntenic group. The implications of the chromosomal location of this ancient synteny group for the evolution of the mammalian X chromosome are discussed.</p>","PeriodicalId":8573,"journal":{"name":"Australian journal of biological sciences","volume":"41 2","pages":"231-7"},"PeriodicalIF":0.0000,"publicationDate":"1988-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gene mapping in marsupials and monotremes, V. Synteny between hypoxanthine phosphoribosyltransferase and phosphoglycerate kinase in the platypus.\",\"authors\":\"J M Watson, J A Graves\",\"doi\":\"10.1071/bi9880231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to extend comparative mapping studies to the monotreme mammals (subclass Prototheria), somatic-cell hybrids were obtained between Chinese-hamster cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) and platypus fibroblasts. The characteristics of these hybrids closely resemble those of metatherian x eutherian hybrids, in that they are recovered at low frequency and they rapidly segregate and fragment platypus chromosomes. Biochemical and cytological studies of the hybrids, their subclones and HPRT-deficient revertants indicate that phosphoglycerate kinase is syntenic with HPRT in the platypus (as it is in other mammals); however, the studies do not permit chromosomal assignment of the syntenic group. The implications of the chromosomal location of this ancient synteny group for the evolution of the mammalian X chromosome are discussed.</p>\",\"PeriodicalId\":8573,\"journal\":{\"name\":\"Australian journal of biological sciences\",\"volume\":\"41 2\",\"pages\":\"231-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian journal of biological sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/bi9880231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian journal of biological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/bi9880231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gene mapping in marsupials and monotremes, V. Synteny between hypoxanthine phosphoribosyltransferase and phosphoglycerate kinase in the platypus.
In order to extend comparative mapping studies to the monotreme mammals (subclass Prototheria), somatic-cell hybrids were obtained between Chinese-hamster cells deficient in hypoxanthine phosphoribosyltransferase (HPRT) and platypus fibroblasts. The characteristics of these hybrids closely resemble those of metatherian x eutherian hybrids, in that they are recovered at low frequency and they rapidly segregate and fragment platypus chromosomes. Biochemical and cytological studies of the hybrids, their subclones and HPRT-deficient revertants indicate that phosphoglycerate kinase is syntenic with HPRT in the platypus (as it is in other mammals); however, the studies do not permit chromosomal assignment of the syntenic group. The implications of the chromosomal location of this ancient synteny group for the evolution of the mammalian X chromosome are discussed.