Jun Xie, Youli Zhang, Ziyang Wang, Xiaocheng Jin, Xiaoli Lu, Shengxiang Ge, Xiaoping Min
{"title":"PPI-Graphomer:使用预训练和图形转换模型增强蛋白质亲和预测。","authors":"Jun Xie, Youli Zhang, Ziyang Wang, Xiaocheng Jin, Xiaoli Lu, Shengxiang Ge, Xiaoping Min","doi":"10.1186/s12859-025-06123-2","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) refer to the phenomenon of protein binding through various types of bonds to execute biological functions. These interactions are critical for understanding biological mechanisms and drug research. Among these, the protein binding interface is a critical region involved in protein-protein interactions, particularly the hotspot residues on it that play a key role in protein interactions. Current deep learning methods trained on large-scale data can characterize proteins to a certain extent, but they often struggle to adequately capture information about protein binding interfaces. To address this limitation, we propose the PPI-Graphomer module, which integrates pretrained features from large-scale language models and inverse folding models. This approach enhances the characterization of protein binding interfaces by defining edge relationships and interface masks on the basis of molecular interaction information. Our model outperforms existing methods across multiple benchmark datasets and demonstrates strong generalization capabilities.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"116"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042501/pdf/","citationCount":"0","resultStr":"{\"title\":\"PPI-Graphomer: enhanced protein-protein affinity prediction using pretrained and graph transformer models.\",\"authors\":\"Jun Xie, Youli Zhang, Ziyang Wang, Xiaocheng Jin, Xiaoli Lu, Shengxiang Ge, Xiaoping Min\",\"doi\":\"10.1186/s12859-025-06123-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-protein interactions (PPIs) refer to the phenomenon of protein binding through various types of bonds to execute biological functions. These interactions are critical for understanding biological mechanisms and drug research. Among these, the protein binding interface is a critical region involved in protein-protein interactions, particularly the hotspot residues on it that play a key role in protein interactions. Current deep learning methods trained on large-scale data can characterize proteins to a certain extent, but they often struggle to adequately capture information about protein binding interfaces. To address this limitation, we propose the PPI-Graphomer module, which integrates pretrained features from large-scale language models and inverse folding models. This approach enhances the characterization of protein binding interfaces by defining edge relationships and interface masks on the basis of molecular interaction information. Our model outperforms existing methods across multiple benchmark datasets and demonstrates strong generalization capabilities.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"116\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06123-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06123-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PPI-Graphomer: enhanced protein-protein affinity prediction using pretrained and graph transformer models.
Protein-protein interactions (PPIs) refer to the phenomenon of protein binding through various types of bonds to execute biological functions. These interactions are critical for understanding biological mechanisms and drug research. Among these, the protein binding interface is a critical region involved in protein-protein interactions, particularly the hotspot residues on it that play a key role in protein interactions. Current deep learning methods trained on large-scale data can characterize proteins to a certain extent, but they often struggle to adequately capture information about protein binding interfaces. To address this limitation, we propose the PPI-Graphomer module, which integrates pretrained features from large-scale language models and inverse folding models. This approach enhances the characterization of protein binding interfaces by defining edge relationships and interface masks on the basis of molecular interaction information. Our model outperforms existing methods across multiple benchmark datasets and demonstrates strong generalization capabilities.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.