Camille Guilmineau, Marie Tremblay-Franco, Nathalie Vialaneix, Rémi Servien
{"title":"腓尼基:纵向代谢组学途径分析的一种新的统计方法。","authors":"Camille Guilmineau, Marie Tremblay-Franco, Nathalie Vialaneix, Rémi Servien","doi":"10.1186/s12859-025-06118-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolomics describes the metabolic profile of an organism at a given time by the concentrations of its constituent metabolites. When studied over time, metabolite concentrations can help understand the dynamical evolution of a biological process. However, metabolites are involved into sequences of chemical reactions, called metabolic pathways, related to a given biological function. Accounting for these pathways into statistical methods for metabolomic data is thus a relevant way to directly express results in terms of biological functions and to increase their interpretability.</p><p><strong>Methods: </strong>We propose a new method, phoenics, to perform differential analysis for longitudinal metabolomic data at the pathway level. In short, phoenics proceeds in two steps: First, the matrix of metabolite quantifications is transformed by a dimension reduction approach accounting for pathway information. Then, a mixed linear model is fitted on the transformed data.</p><p><strong>Results: </strong>This method was applied to semi-synthetic NMR data and two real NMR datasets assessing the effects of antibiotics and irritable bowel syndrome on feces. Results showed that phoenics properly controls the Type I error rate and has a better ability to detect differential metabolic pathways and to extract new impacted biological functions than alternative methods. The method is implemented in the R package phoenics available on CRAN.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"105"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001596/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phoenics: a novel statistical approach for longitudinal metabolomic pathway analysis.\",\"authors\":\"Camille Guilmineau, Marie Tremblay-Franco, Nathalie Vialaneix, Rémi Servien\",\"doi\":\"10.1186/s12859-025-06118-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Metabolomics describes the metabolic profile of an organism at a given time by the concentrations of its constituent metabolites. When studied over time, metabolite concentrations can help understand the dynamical evolution of a biological process. However, metabolites are involved into sequences of chemical reactions, called metabolic pathways, related to a given biological function. Accounting for these pathways into statistical methods for metabolomic data is thus a relevant way to directly express results in terms of biological functions and to increase their interpretability.</p><p><strong>Methods: </strong>We propose a new method, phoenics, to perform differential analysis for longitudinal metabolomic data at the pathway level. In short, phoenics proceeds in two steps: First, the matrix of metabolite quantifications is transformed by a dimension reduction approach accounting for pathway information. Then, a mixed linear model is fitted on the transformed data.</p><p><strong>Results: </strong>This method was applied to semi-synthetic NMR data and two real NMR datasets assessing the effects of antibiotics and irritable bowel syndrome on feces. Results showed that phoenics properly controls the Type I error rate and has a better ability to detect differential metabolic pathways and to extract new impacted biological functions than alternative methods. The method is implemented in the R package phoenics available on CRAN.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"105\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001596/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06118-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06118-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Phoenics: a novel statistical approach for longitudinal metabolomic pathway analysis.
Background: Metabolomics describes the metabolic profile of an organism at a given time by the concentrations of its constituent metabolites. When studied over time, metabolite concentrations can help understand the dynamical evolution of a biological process. However, metabolites are involved into sequences of chemical reactions, called metabolic pathways, related to a given biological function. Accounting for these pathways into statistical methods for metabolomic data is thus a relevant way to directly express results in terms of biological functions and to increase their interpretability.
Methods: We propose a new method, phoenics, to perform differential analysis for longitudinal metabolomic data at the pathway level. In short, phoenics proceeds in two steps: First, the matrix of metabolite quantifications is transformed by a dimension reduction approach accounting for pathway information. Then, a mixed linear model is fitted on the transformed data.
Results: This method was applied to semi-synthetic NMR data and two real NMR datasets assessing the effects of antibiotics and irritable bowel syndrome on feces. Results showed that phoenics properly controls the Type I error rate and has a better ability to detect differential metabolic pathways and to extract new impacted biological functions than alternative methods. The method is implemented in the R package phoenics available on CRAN.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.