组学数据的非线性嵌入与集成:一种快速且无调优的方法。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Shengjie Liu, Tianwei Yu
{"title":"组学数据的非线性嵌入与集成:一种快速且无调优的方法。","authors":"Shengjie Liu, Tianwei Yu","doi":"10.1093/bib/bbaf184","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid progress of single-cell technology has facilitated cost-effective acquisition of diverse omics data, allowing biologists to unravel the complexities of cell populations, disease states, and more. Additionally, single-cell multi-omics technologies have opened new avenues for studying biological interactions. However, the high dimensionality and sparsity of omics data present significant analytical challenges. Dimension reduction (DR) techniques are hence essential for analyzing such complex data, yet many existing methods have inherent limitations. Linear methods like principal component analysis (PCA) struggle to capture intricate associations within data. In response, nonlinear techniques have emerged, but they may face scalability issues, be restricted to single-omics data, or prioritize visualization over generating informative embeddings. Here, we introduce dissimilarity based on conditional ordered list (DCOL) correlation, a novel measure for quantifying nonlinear relationships between variables. Based on this measure, we propose DCOL-PCA and DCOL-Canonical Correlation Analysis for dimension reduction and integration of single- and multi-omics data. In simulations, our methods outperformed nine DR methods and four joint dimension reduction methods, demonstrating stable performance across various settings. We also validated these methods on real datasets, with our method demonstrating its ability to detect intricate signals within and between omics data and generate lower dimensional embeddings that preserve the essential information and latent structures.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009717/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonlinear embedding and integration of omics data: a fast and tuning-free approach.\",\"authors\":\"Shengjie Liu, Tianwei Yu\",\"doi\":\"10.1093/bib/bbaf184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid progress of single-cell technology has facilitated cost-effective acquisition of diverse omics data, allowing biologists to unravel the complexities of cell populations, disease states, and more. Additionally, single-cell multi-omics technologies have opened new avenues for studying biological interactions. However, the high dimensionality and sparsity of omics data present significant analytical challenges. Dimension reduction (DR) techniques are hence essential for analyzing such complex data, yet many existing methods have inherent limitations. Linear methods like principal component analysis (PCA) struggle to capture intricate associations within data. In response, nonlinear techniques have emerged, but they may face scalability issues, be restricted to single-omics data, or prioritize visualization over generating informative embeddings. Here, we introduce dissimilarity based on conditional ordered list (DCOL) correlation, a novel measure for quantifying nonlinear relationships between variables. Based on this measure, we propose DCOL-PCA and DCOL-Canonical Correlation Analysis for dimension reduction and integration of single- and multi-omics data. In simulations, our methods outperformed nine DR methods and four joint dimension reduction methods, demonstrating stable performance across various settings. We also validated these methods on real datasets, with our method demonstrating its ability to detect intricate signals within and between omics data and generate lower dimensional embeddings that preserve the essential information and latent structures.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009717/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf184\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf184","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单细胞技术的快速发展促进了经济高效地获取多种组学数据,使生物学家能够揭示细胞群、疾病状态等的复杂性。此外,单细胞多组学技术为研究生物相互作用开辟了新的途径。然而,组学数据的高维性和稀疏性给分析带来了重大挑战。因此,降维(DR)技术对于分析此类复杂数据至关重要,但许多现有方法存在固有的局限性。像主成分分析(PCA)这样的线性方法很难捕捉数据中复杂的关联。作为回应,非线性技术已经出现,但它们可能面临可扩展性问题,受限于单组学数据,或者优先考虑可视化而不是生成信息嵌入。本文介绍了一种量化变量间非线性关系的新方法——条件有序表(DCOL)相关性。在此基础上,我们提出了DCOL-PCA和dcol -典型相关分析,用于单组学和多组学数据的降维和整合。在模拟中,我们的方法优于9种DR方法和4种联合降维方法,在各种设置中表现出稳定的性能。我们还在真实数据集上验证了这些方法,我们的方法证明了它能够检测组学数据内部和之间的复杂信号,并生成保留基本信息和潜在结构的低维嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear embedding and integration of omics data: a fast and tuning-free approach.

The rapid progress of single-cell technology has facilitated cost-effective acquisition of diverse omics data, allowing biologists to unravel the complexities of cell populations, disease states, and more. Additionally, single-cell multi-omics technologies have opened new avenues for studying biological interactions. However, the high dimensionality and sparsity of omics data present significant analytical challenges. Dimension reduction (DR) techniques are hence essential for analyzing such complex data, yet many existing methods have inherent limitations. Linear methods like principal component analysis (PCA) struggle to capture intricate associations within data. In response, nonlinear techniques have emerged, but they may face scalability issues, be restricted to single-omics data, or prioritize visualization over generating informative embeddings. Here, we introduce dissimilarity based on conditional ordered list (DCOL) correlation, a novel measure for quantifying nonlinear relationships between variables. Based on this measure, we propose DCOL-PCA and DCOL-Canonical Correlation Analysis for dimension reduction and integration of single- and multi-omics data. In simulations, our methods outperformed nine DR methods and four joint dimension reduction methods, demonstrating stable performance across various settings. We also validated these methods on real datasets, with our method demonstrating its ability to detect intricate signals within and between omics data and generate lower dimensional embeddings that preserve the essential information and latent structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信