{"title":"组学数据的非线性嵌入与集成:一种快速且无调优的方法。","authors":"Shengjie Liu, Tianwei Yu","doi":"10.1093/bib/bbaf184","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid progress of single-cell technology has facilitated cost-effective acquisition of diverse omics data, allowing biologists to unravel the complexities of cell populations, disease states, and more. Additionally, single-cell multi-omics technologies have opened new avenues for studying biological interactions. However, the high dimensionality and sparsity of omics data present significant analytical challenges. Dimension reduction (DR) techniques are hence essential for analyzing such complex data, yet many existing methods have inherent limitations. Linear methods like principal component analysis (PCA) struggle to capture intricate associations within data. In response, nonlinear techniques have emerged, but they may face scalability issues, be restricted to single-omics data, or prioritize visualization over generating informative embeddings. Here, we introduce dissimilarity based on conditional ordered list (DCOL) correlation, a novel measure for quantifying nonlinear relationships between variables. Based on this measure, we propose DCOL-PCA and DCOL-Canonical Correlation Analysis for dimension reduction and integration of single- and multi-omics data. In simulations, our methods outperformed nine DR methods and four joint dimension reduction methods, demonstrating stable performance across various settings. We also validated these methods on real datasets, with our method demonstrating its ability to detect intricate signals within and between omics data and generate lower dimensional embeddings that preserve the essential information and latent structures.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009717/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonlinear embedding and integration of omics data: a fast and tuning-free approach.\",\"authors\":\"Shengjie Liu, Tianwei Yu\",\"doi\":\"10.1093/bib/bbaf184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid progress of single-cell technology has facilitated cost-effective acquisition of diverse omics data, allowing biologists to unravel the complexities of cell populations, disease states, and more. Additionally, single-cell multi-omics technologies have opened new avenues for studying biological interactions. However, the high dimensionality and sparsity of omics data present significant analytical challenges. Dimension reduction (DR) techniques are hence essential for analyzing such complex data, yet many existing methods have inherent limitations. Linear methods like principal component analysis (PCA) struggle to capture intricate associations within data. In response, nonlinear techniques have emerged, but they may face scalability issues, be restricted to single-omics data, or prioritize visualization over generating informative embeddings. Here, we introduce dissimilarity based on conditional ordered list (DCOL) correlation, a novel measure for quantifying nonlinear relationships between variables. Based on this measure, we propose DCOL-PCA and DCOL-Canonical Correlation Analysis for dimension reduction and integration of single- and multi-omics data. In simulations, our methods outperformed nine DR methods and four joint dimension reduction methods, demonstrating stable performance across various settings. We also validated these methods on real datasets, with our method demonstrating its ability to detect intricate signals within and between omics data and generate lower dimensional embeddings that preserve the essential information and latent structures.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009717/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf184\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf184","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Nonlinear embedding and integration of omics data: a fast and tuning-free approach.
The rapid progress of single-cell technology has facilitated cost-effective acquisition of diverse omics data, allowing biologists to unravel the complexities of cell populations, disease states, and more. Additionally, single-cell multi-omics technologies have opened new avenues for studying biological interactions. However, the high dimensionality and sparsity of omics data present significant analytical challenges. Dimension reduction (DR) techniques are hence essential for analyzing such complex data, yet many existing methods have inherent limitations. Linear methods like principal component analysis (PCA) struggle to capture intricate associations within data. In response, nonlinear techniques have emerged, but they may face scalability issues, be restricted to single-omics data, or prioritize visualization over generating informative embeddings. Here, we introduce dissimilarity based on conditional ordered list (DCOL) correlation, a novel measure for quantifying nonlinear relationships between variables. Based on this measure, we propose DCOL-PCA and DCOL-Canonical Correlation Analysis for dimension reduction and integration of single- and multi-omics data. In simulations, our methods outperformed nine DR methods and four joint dimension reduction methods, demonstrating stable performance across various settings. We also validated these methods on real datasets, with our method demonstrating its ability to detect intricate signals within and between omics data and generate lower dimensional embeddings that preserve the essential information and latent structures.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.