Jelard Aquino, Daniel Witoslawski, Steve Park, Jessica Holder, Amei Amei, Mira V Han
{"title":"一个新的剪接图允许直接比较基于外显子和基于剪接连接的方法来替代剪接检测。","authors":"Jelard Aquino, Daniel Witoslawski, Steve Park, Jessica Holder, Amei Amei, Mira V Han","doi":"10.1093/bib/bbaf204","DOIUrl":null,"url":null,"abstract":"<p><p>There are primarily two computational approaches to alternative splicing (AS) detection using short reads: splice junction-based and exon-based approaches. Despite their shared goal of addressing the same biological problem, these approaches have not been reconciled before. We devised a novel graph structure and algorithm aimed at mapping between the exonic parts and splicing events detected by the two different methods. Through simulations, we demonstrated disparities in sensitivity and specificity between splice junction-based and exon-based methods. When applied to empirical data, there were large discrepancies in the results, suggesting that the methods are complementary. With the discrepancies localized to individual events and exonic parts, we were able to gain insights into the strengths and weaknesses inherent in each approach. Finally, we integrated the results to generate a comprehensive list of both common and unique AS events detected by both methodologies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062524/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel splicing graph allows a direct comparison between exon-based and splice junction-based approaches to alternative splicing detection.\",\"authors\":\"Jelard Aquino, Daniel Witoslawski, Steve Park, Jessica Holder, Amei Amei, Mira V Han\",\"doi\":\"10.1093/bib/bbaf204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are primarily two computational approaches to alternative splicing (AS) detection using short reads: splice junction-based and exon-based approaches. Despite their shared goal of addressing the same biological problem, these approaches have not been reconciled before. We devised a novel graph structure and algorithm aimed at mapping between the exonic parts and splicing events detected by the two different methods. Through simulations, we demonstrated disparities in sensitivity and specificity between splice junction-based and exon-based methods. When applied to empirical data, there were large discrepancies in the results, suggesting that the methods are complementary. With the discrepancies localized to individual events and exonic parts, we were able to gain insights into the strengths and weaknesses inherent in each approach. Finally, we integrated the results to generate a comprehensive list of both common and unique AS events detected by both methodologies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12062524/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf204\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf204","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A novel splicing graph allows a direct comparison between exon-based and splice junction-based approaches to alternative splicing detection.
There are primarily two computational approaches to alternative splicing (AS) detection using short reads: splice junction-based and exon-based approaches. Despite their shared goal of addressing the same biological problem, these approaches have not been reconciled before. We devised a novel graph structure and algorithm aimed at mapping between the exonic parts and splicing events detected by the two different methods. Through simulations, we demonstrated disparities in sensitivity and specificity between splice junction-based and exon-based methods. When applied to empirical data, there were large discrepancies in the results, suggesting that the methods are complementary. With the discrepancies localized to individual events and exonic parts, we were able to gain insights into the strengths and weaknesses inherent in each approach. Finally, we integrated the results to generate a comprehensive list of both common and unique AS events detected by both methodologies.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.