{"title":"Chrombus-XMBD:一个从染色质特征预测3d基因组的图卷积模型。","authors":"Yuanyuan Zeng, Zhiyu You, Jiayang Guo, Jialin Zhao, Ying Zhou, Jialiang Huang, Xiaowen Lyu, Longbiao Chen, Qiyuan Li","doi":"10.1093/bib/bbaf183","DOIUrl":null,"url":null,"abstract":"<p><p>The 3D conformation of the chromatin is crucial for transcriptional regulation. However, current experimental techniques for detecting the 3D structure of the genome are costly and limited to the biological conditions. Here, we described \"ChrombusXMBD,\" a graph convolution model capable of predicting chromatin interactions ab initio based on available chromatin features. Using dynamic edge convolution with multihead attention mechanism, Chrombus encodes the 2D-chromatin features into a learnable embedding space, thereby generating a genome-wide 3D-contactmap. In validation, Chrombus effectively recapitulated the topological associated domains, expression quantitative trait loci, and promoter/enhancer interactions. Especially, Chrombus outperforms existing algorithms in predicting chromatin interactions over 1-2 Mb, increasing prediction correlation by 11.8%-48.7%, and predicts long-range interactions over 2 Mb (Pearson's coefficient 0.243-0.582). Chrombus also exhibits strong generalizability across human and mouse-derived cell lines. Additionally, the parameters of Chrombus inform the biological mechanisms underlying cistrome. Our model provides a new, generalizable analytical tool for understanding the complex dynamics of chromatin interactions and the landscape of cis-regulation of gene expression.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047703/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chrombus-XMBD: a graph convolution model predicting 3D-genome from chromatin features.\",\"authors\":\"Yuanyuan Zeng, Zhiyu You, Jiayang Guo, Jialin Zhao, Ying Zhou, Jialiang Huang, Xiaowen Lyu, Longbiao Chen, Qiyuan Li\",\"doi\":\"10.1093/bib/bbaf183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The 3D conformation of the chromatin is crucial for transcriptional regulation. However, current experimental techniques for detecting the 3D structure of the genome are costly and limited to the biological conditions. Here, we described \\\"ChrombusXMBD,\\\" a graph convolution model capable of predicting chromatin interactions ab initio based on available chromatin features. Using dynamic edge convolution with multihead attention mechanism, Chrombus encodes the 2D-chromatin features into a learnable embedding space, thereby generating a genome-wide 3D-contactmap. In validation, Chrombus effectively recapitulated the topological associated domains, expression quantitative trait loci, and promoter/enhancer interactions. Especially, Chrombus outperforms existing algorithms in predicting chromatin interactions over 1-2 Mb, increasing prediction correlation by 11.8%-48.7%, and predicts long-range interactions over 2 Mb (Pearson's coefficient 0.243-0.582). Chrombus also exhibits strong generalizability across human and mouse-derived cell lines. Additionally, the parameters of Chrombus inform the biological mechanisms underlying cistrome. Our model provides a new, generalizable analytical tool for understanding the complex dynamics of chromatin interactions and the landscape of cis-regulation of gene expression.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047703/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf183\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Chrombus-XMBD: a graph convolution model predicting 3D-genome from chromatin features.
The 3D conformation of the chromatin is crucial for transcriptional regulation. However, current experimental techniques for detecting the 3D structure of the genome are costly and limited to the biological conditions. Here, we described "ChrombusXMBD," a graph convolution model capable of predicting chromatin interactions ab initio based on available chromatin features. Using dynamic edge convolution with multihead attention mechanism, Chrombus encodes the 2D-chromatin features into a learnable embedding space, thereby generating a genome-wide 3D-contactmap. In validation, Chrombus effectively recapitulated the topological associated domains, expression quantitative trait loci, and promoter/enhancer interactions. Especially, Chrombus outperforms existing algorithms in predicting chromatin interactions over 1-2 Mb, increasing prediction correlation by 11.8%-48.7%, and predicts long-range interactions over 2 Mb (Pearson's coefficient 0.243-0.582). Chrombus also exhibits strong generalizability across human and mouse-derived cell lines. Additionally, the parameters of Chrombus inform the biological mechanisms underlying cistrome. Our model provides a new, generalizable analytical tool for understanding the complex dynamics of chromatin interactions and the landscape of cis-regulation of gene expression.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.