内源性阿片与哺乳动物呼吸控制网络的发展。

IF 3.6 2区 医学 Q1 PHYSIOLOGY
Jessica R Whitaker-Fornek, Erica S Levitt
{"title":"内源性阿片与哺乳动物呼吸控制网络的发展。","authors":"Jessica R Whitaker-Fornek, Erica S Levitt","doi":"10.1152/ajplung.00316.2024","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that exogenous opioids such as morphine and fentanyl can depress breathing by inhibiting brainstem breathing control circuit activity. However, the role of endogenous opioids in breathing control is less clear. Endogenous opioid peptides and opioid receptors are expressed within the embryonic brainstem at the same time as when respiratory rhythm-generating neurons begin to mature. However, the extent to which endogenous opioids participate in respiratory control maturation is not known. Therefore, our goal is to review the current state of knowledge for the role of endogenous opioids in breathing control development. We set the stage by reviewing how endogenous opioid peptides regulate breathing in young and adult mammals. We describe the prenatal and postnatal development of endogenous opioid peptides and receptors in relation to breathing development. In addition, we review the effects of exogenous opioids on breathing during early life and identify areas in need of further study. We also broadly describe pain circuitry development to compare the opioid influence on nociception with how opioids impact breathing. We map the locations of endogenous opioid peptide production in the adult and developing brainstem respiratory network. Last, we propose clinical breathing conditions that may involve the endogenous opioid system. Given advances in tools for detecting endogenous opioid peptide release and the evidence reviewed herein, future research will yield new discoveries in the role of endogenous opioids in breathing across the lifespan.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L901-L918"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous opioids and the development of the mammalian respiratory control network.\",\"authors\":\"Jessica R Whitaker-Fornek, Erica S Levitt\",\"doi\":\"10.1152/ajplung.00316.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well known that exogenous opioids such as morphine and fentanyl can depress breathing by inhibiting brainstem breathing control circuit activity. However, the role of endogenous opioids in breathing control is less clear. Endogenous opioid peptides and opioid receptors are expressed within the embryonic brainstem at the same time as when respiratory rhythm-generating neurons begin to mature. However, the extent to which endogenous opioids participate in respiratory control maturation is not known. Therefore, our goal is to review the current state of knowledge for the role of endogenous opioids in breathing control development. We set the stage by reviewing how endogenous opioid peptides regulate breathing in young and adult mammals. We describe the prenatal and postnatal development of endogenous opioid peptides and receptors in relation to breathing development. In addition, we review the effects of exogenous opioids on breathing during early life and identify areas in need of further study. We also broadly describe pain circuitry development to compare the opioid influence on nociception with how opioids impact breathing. We map the locations of endogenous opioid peptide production in the adult and developing brainstem respiratory network. Last, we propose clinical breathing conditions that may involve the endogenous opioid system. Given advances in tools for detecting endogenous opioid peptide release and the evidence reviewed herein, future research will yield new discoveries in the role of endogenous opioids in breathing across the lifespan.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L901-L918\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00316.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00316.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,外源性阿片类药物如吗啡和芬太尼可以通过抑制脑干呼吸控制回路的活动来抑制呼吸。然而,内源性阿片类药物在呼吸控制中的作用尚不清楚。内源性阿片肽和阿片受体在胚胎脑干内与产生呼吸节律的神经元开始成熟同时表达。然而,内源性阿片类药物参与呼吸控制成熟的程度尚不清楚。因此,我们的目标是回顾内源性阿片类药物在呼吸控制发展中的作用的知识现状。我们通过回顾内源性阿片肽如何调节年轻和成年哺乳动物的呼吸来设定阶段。我们描述了与呼吸发育有关的内源性阿片肽和受体的产前和产后发育。此外,我们回顾了外源性阿片样物质对生命早期呼吸的影响,并确定了需要进一步研究的领域。我们还广泛地描述了疼痛回路的发展,以比较阿片类药物对伤害感觉的影响与阿片类药物如何影响呼吸。我们绘制了成人和发育中的脑干呼吸网络中内源性阿片肽生产的位置。最后,我们提出了可能涉及内源性阿片系统的临床呼吸条件。鉴于检测内源性阿片肽释放的工具的进步和本文综述的证据,未来的研究将在内源性阿片肽在整个生命周期呼吸中的作用方面产生新的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endogenous opioids and the development of the mammalian respiratory control network.

It is well known that exogenous opioids such as morphine and fentanyl can depress breathing by inhibiting brainstem breathing control circuit activity. However, the role of endogenous opioids in breathing control is less clear. Endogenous opioid peptides and opioid receptors are expressed within the embryonic brainstem at the same time as when respiratory rhythm-generating neurons begin to mature. However, the extent to which endogenous opioids participate in respiratory control maturation is not known. Therefore, our goal is to review the current state of knowledge for the role of endogenous opioids in breathing control development. We set the stage by reviewing how endogenous opioid peptides regulate breathing in young and adult mammals. We describe the prenatal and postnatal development of endogenous opioid peptides and receptors in relation to breathing development. In addition, we review the effects of exogenous opioids on breathing during early life and identify areas in need of further study. We also broadly describe pain circuitry development to compare the opioid influence on nociception with how opioids impact breathing. We map the locations of endogenous opioid peptide production in the adult and developing brainstem respiratory network. Last, we propose clinical breathing conditions that may involve the endogenous opioid system. Given advances in tools for detecting endogenous opioid peptide release and the evidence reviewed herein, future research will yield new discoveries in the role of endogenous opioids in breathing across the lifespan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信