食源性多糖通过增强脂肪产热和抗肥胖作用:结构-活性关系、机制和肠道微生态调节。

IF 7.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Zhenyu Wang, Qiyu Xu, Lijuan Hou, Zhiyong He, Mark Christian, Xianjun Dai
{"title":"食源性多糖通过增强脂肪产热和抗肥胖作用:结构-活性关系、机制和肠道微生态调节。","authors":"Zhenyu Wang, Qiyu Xu, Lijuan Hou, Zhiyong He, Mark Christian, Xianjun Dai","doi":"10.1080/10408398.2025.2500675","DOIUrl":null,"url":null,"abstract":"<p><p>Polysaccharides represent a crucial and extensively utilized bioactive fraction in natural products, which are employed in the treatment of metabolic disorders due to their significant therapeutic potential. Recently, food-derived polysaccharides (FPs) have emerged as significant substances in obesity management, valued for their ability to activate thermogenic fat. This review discusses the correlation between the structural features of FPs and their efficacy in combating obesity. Moreover, the molecular mechanism by which FPs regulate thermogenic fat and how the intestinal microecology induces thermogenic fat activity is elucidated. The anti-obesity effects of FPs depend on their structure, including molecular weight, composition, linkages, conformation, and branching. Furthermore, FPs regulate fat thermogenesis via multiple mechanisms, including AMPK, p38, AKT, PGC-1α-FNDC5/irisin, and miRNA signaling pathways. Importantly, gut microbiota, together with its associated metabolites and gut-derived hormones, are pivotal in the regulatory control of brown fat by FPs. This work provides an in-depth examination of how adipose tissue thermogenesis contributes to the anti-obesity effects of FPs, shedding light on their potential in preventing obesity and informing the formulation of natural weight-loss remedies.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-22"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Food-derived polysaccharides and anti-obesity effects through enhancing adipose thermogenesis: structure-activity relationships, mechanisms, and regulation of gut microecology.\",\"authors\":\"Zhenyu Wang, Qiyu Xu, Lijuan Hou, Zhiyong He, Mark Christian, Xianjun Dai\",\"doi\":\"10.1080/10408398.2025.2500675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polysaccharides represent a crucial and extensively utilized bioactive fraction in natural products, which are employed in the treatment of metabolic disorders due to their significant therapeutic potential. Recently, food-derived polysaccharides (FPs) have emerged as significant substances in obesity management, valued for their ability to activate thermogenic fat. This review discusses the correlation between the structural features of FPs and their efficacy in combating obesity. Moreover, the molecular mechanism by which FPs regulate thermogenic fat and how the intestinal microecology induces thermogenic fat activity is elucidated. The anti-obesity effects of FPs depend on their structure, including molecular weight, composition, linkages, conformation, and branching. Furthermore, FPs regulate fat thermogenesis via multiple mechanisms, including AMPK, p38, AKT, PGC-1α-FNDC5/irisin, and miRNA signaling pathways. Importantly, gut microbiota, together with its associated metabolites and gut-derived hormones, are pivotal in the regulatory control of brown fat by FPs. This work provides an in-depth examination of how adipose tissue thermogenesis contributes to the anti-obesity effects of FPs, shedding light on their potential in preventing obesity and informing the formulation of natural weight-loss remedies.</p>\",\"PeriodicalId\":10767,\"journal\":{\"name\":\"Critical reviews in food science and nutrition\",\"volume\":\" \",\"pages\":\"1-22\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in food science and nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10408398.2025.2500675\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2500675","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多糖是天然产物中重要且被广泛利用的生物活性成分,因其具有显著的治疗潜力而被用于治疗代谢紊乱。最近,食物来源的多糖(FPs)已成为肥胖管理的重要物质,因其激活热性脂肪的能力而受到重视。本文就FPs的结构特征与其抗肥胖功效之间的关系作一综述。此外,还阐明了FPs调节热性脂肪的分子机制以及肠道微生态如何诱导热性脂肪活性。FPs的抗肥胖作用取决于它们的结构,包括分子量、组成、键、构象和分支。此外,FPs通过多种机制调节脂肪产热,包括AMPK、p38、AKT、PGC-1α-FNDC5/irisin和miRNA信号通路。重要的是,肠道微生物群及其相关代谢物和肠道源性激素在FPs对棕色脂肪的调节控制中起关键作用。这项工作深入研究了脂肪组织产热如何促进FPs的抗肥胖作用,揭示了它们在预防肥胖方面的潜力,并为天然减肥疗法的制定提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Food-derived polysaccharides and anti-obesity effects through enhancing adipose thermogenesis: structure-activity relationships, mechanisms, and regulation of gut microecology.

Polysaccharides represent a crucial and extensively utilized bioactive fraction in natural products, which are employed in the treatment of metabolic disorders due to their significant therapeutic potential. Recently, food-derived polysaccharides (FPs) have emerged as significant substances in obesity management, valued for their ability to activate thermogenic fat. This review discusses the correlation between the structural features of FPs and their efficacy in combating obesity. Moreover, the molecular mechanism by which FPs regulate thermogenic fat and how the intestinal microecology induces thermogenic fat activity is elucidated. The anti-obesity effects of FPs depend on their structure, including molecular weight, composition, linkages, conformation, and branching. Furthermore, FPs regulate fat thermogenesis via multiple mechanisms, including AMPK, p38, AKT, PGC-1α-FNDC5/irisin, and miRNA signaling pathways. Importantly, gut microbiota, together with its associated metabolites and gut-derived hormones, are pivotal in the regulatory control of brown fat by FPs. This work provides an in-depth examination of how adipose tissue thermogenesis contributes to the anti-obesity effects of FPs, shedding light on their potential in preventing obesity and informing the formulation of natural weight-loss remedies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.60
自引率
4.90%
发文量
600
审稿时长
7.5 months
期刊介绍: Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition. With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信