enavoglilozin抑制SGLT2通过上调小胶质细胞AMPK信号显著降低阿尔茨海默病5XFAD小鼠模型的Aβ病理和恢复认知功能

IF 7.1 1区 医学 Q1 CELL BIOLOGY
Aging Cell Pub Date : 2025-05-10 DOI:10.1111/acel.70101
Jihui Han, Jaehoon Song, Eun Sun Jung, Ji Won Choi, Hye Young Ji, Inhee Mook-Jung
{"title":"enavoglilozin抑制SGLT2通过上调小胶质细胞AMPK信号显著降低阿尔茨海默病5XFAD小鼠模型的Aβ病理和恢复认知功能","authors":"Jihui Han, Jaehoon Song, Eun Sun Jung, Ji Won Choi, Hye Young Ji, Inhee Mook-Jung","doi":"10.1111/acel.70101","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline. Metabolic dysfunctions, particularly type 2 diabetes mellitus (T2DM), have been implicated in AD pathogenesis, highlighting the potential for novel therapeutic approaches targeting shared underlying mechanisms. Here, we investigate sodium-glucose cotransporter 2 (SGLT2) inhibition as a therapeutic strategy for AD using Enavogliflozin, a potent SGLT2 inhibitor, in the 5XFAD mouse model. Five-month-old 5XFAD mice were treated with Enavogliflozin (0.1 or 1 mg/kg) or vehicle for 8 weeks. The higher dose significantly improved cognitive performance in Y-maze and Morris Water Maze tests, which correlated with enhanced synaptic plasticity and increased acetylcholine levels. Moreover, Enavogliflozin treatment reduced Aβ pathology and plaque burden, particularly affecting larger plaques. Mechanistically, SGLT2 inhibition attenuated neuroinflammation by suppressing NF-κB signaling and proinflammatory cytokine production while promoting microglial recruitment to plaques. In vitro and ex vivo analyses further revealed that Enavogliflozin enhances microglial phagocytic capacity via AMPK-mediated mitochondrial biogenesis and function. These findings highlight the multifaceted neuroprotective effects of SGLT2 inhibition in AD, demonstrating its potential to mitigate pathology and improve cognitive function. By uncovering its impact on neuroinflammation and microglial function, this study establishes SGLT2 inhibition as a promising therapeutic avenue for AD and other neurodegenerative disorders.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70101"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SGLT2 Inhibition by Enavogliflozin Significantly Reduces Aβ Pathology and Restores Cognitive Function via Upregulation of Microglial AMPK Signaling in 5XFAD Mouse Model of Alzheimer's Disease.\",\"authors\":\"Jihui Han, Jaehoon Song, Eun Sun Jung, Ji Won Choi, Hye Young Ji, Inhee Mook-Jung\",\"doi\":\"10.1111/acel.70101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline. Metabolic dysfunctions, particularly type 2 diabetes mellitus (T2DM), have been implicated in AD pathogenesis, highlighting the potential for novel therapeutic approaches targeting shared underlying mechanisms. Here, we investigate sodium-glucose cotransporter 2 (SGLT2) inhibition as a therapeutic strategy for AD using Enavogliflozin, a potent SGLT2 inhibitor, in the 5XFAD mouse model. Five-month-old 5XFAD mice were treated with Enavogliflozin (0.1 or 1 mg/kg) or vehicle for 8 weeks. The higher dose significantly improved cognitive performance in Y-maze and Morris Water Maze tests, which correlated with enhanced synaptic plasticity and increased acetylcholine levels. Moreover, Enavogliflozin treatment reduced Aβ pathology and plaque burden, particularly affecting larger plaques. Mechanistically, SGLT2 inhibition attenuated neuroinflammation by suppressing NF-κB signaling and proinflammatory cytokine production while promoting microglial recruitment to plaques. In vitro and ex vivo analyses further revealed that Enavogliflozin enhances microglial phagocytic capacity via AMPK-mediated mitochondrial biogenesis and function. These findings highlight the multifaceted neuroprotective effects of SGLT2 inhibition in AD, demonstrating its potential to mitigate pathology and improve cognitive function. By uncovering its impact on neuroinflammation and microglial function, this study establishes SGLT2 inhibition as a promising therapeutic avenue for AD and other neurodegenerative disorders.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e70101\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.70101\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70101","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种以认知能力下降为特征的进行性神经退行性疾病。代谢功能障碍,特别是2型糖尿病(T2DM),与AD的发病机制有关,这突出了针对共同潜在机制的新治疗方法的潜力。在5XFAD小鼠模型中,我们研究了使用enavoglilozin(一种有效的SGLT2抑制剂)抑制钠-葡萄糖共转运蛋白2 (SGLT2)作为治疗AD的策略。5月龄5XFAD小鼠分别给予依那格列净(0.1或1 mg/kg)或载药治疗8周。较高的剂量显著改善了y型迷宫和Morris水迷宫的认知表现,并与突触可塑性增强和乙酰胆碱水平升高相关。此外,依纳格列净治疗降低了Aβ病理和斑块负担,特别是对较大斑块的影响。从机制上讲,SGLT2抑制通过抑制NF-κB信号传导和促炎细胞因子的产生,同时促进小胶质细胞向斑块聚集,从而减轻神经炎症。体外和离体分析进一步揭示了依纳格列净通过ampk介导的线粒体生物发生和功能增强小胶质细胞吞噬能力。这些发现强调了SGLT2抑制在AD中的多方面神经保护作用,证明了其减轻病理和改善认知功能的潜力。通过揭示其对神经炎症和小胶质细胞功能的影响,本研究确定SGLT2抑制是治疗AD和其他神经退行性疾病的有希望的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SGLT2 Inhibition by Enavogliflozin Significantly Reduces Aβ Pathology and Restores Cognitive Function via Upregulation of Microglial AMPK Signaling in 5XFAD Mouse Model of Alzheimer's Disease.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline. Metabolic dysfunctions, particularly type 2 diabetes mellitus (T2DM), have been implicated in AD pathogenesis, highlighting the potential for novel therapeutic approaches targeting shared underlying mechanisms. Here, we investigate sodium-glucose cotransporter 2 (SGLT2) inhibition as a therapeutic strategy for AD using Enavogliflozin, a potent SGLT2 inhibitor, in the 5XFAD mouse model. Five-month-old 5XFAD mice were treated with Enavogliflozin (0.1 or 1 mg/kg) or vehicle for 8 weeks. The higher dose significantly improved cognitive performance in Y-maze and Morris Water Maze tests, which correlated with enhanced synaptic plasticity and increased acetylcholine levels. Moreover, Enavogliflozin treatment reduced Aβ pathology and plaque burden, particularly affecting larger plaques. Mechanistically, SGLT2 inhibition attenuated neuroinflammation by suppressing NF-κB signaling and proinflammatory cytokine production while promoting microglial recruitment to plaques. In vitro and ex vivo analyses further revealed that Enavogliflozin enhances microglial phagocytic capacity via AMPK-mediated mitochondrial biogenesis and function. These findings highlight the multifaceted neuroprotective effects of SGLT2 inhibition in AD, demonstrating its potential to mitigate pathology and improve cognitive function. By uncovering its impact on neuroinflammation and microglial function, this study establishes SGLT2 inhibition as a promising therapeutic avenue for AD and other neurodegenerative disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信