{"title":"IGF2BP2通过PPARγ/ c - fos调控的双途径驱动颞下颌关节骨性关节炎软骨下骨损伤:NFATC1信号和atg16l2介导的自噬。","authors":"Ziyan Jiang, Jie Zhao, Youde Liang, Zhao Gao, Yanan Sun, Yaying Hu, Junchen Pan, Xing Long, Jiali Zhang","doi":"10.1016/j.ajpath.2025.04.008","DOIUrl":null,"url":null,"abstract":"<p><p>Overactivated osteoclastogenesis leading to abnormal subchondral bone loss is the main feature of temporomandibular joint osteoarthritis (TMJOA) deterioration. The role of N6-methyladenosine in osteoclast-mediated subchondral bone loss in TMJOA remains unknown. Here, we found that an N6-methyladenosine reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was essential for mature osteoclast induction. In TMJ tissues of patients with TMJOA, the expression of IGF2BP2 was increased. Moreover, IGF2BP2 was augmented in subchondral bone of monosodium iodoacetate (MIA)-induced TMJOA mice. Igf2bp2 deficiency attenuated MIA-induced subchondral bone loss and suppressed osteoclast function. Mechanistically, IGF2BP2 directly stabilized Pparg and Fos mRNA to enhance the nuclear factor of activated T cells 1 (NFATC1) signaling, thereby inducing osteoclast maturation. Furthermore, the stabilized peroxisome proliferator-activated receptor γ (PPARγ) promoted the transcription of Fos, resulting in a further amplified signaling of NFATC1. In Igf2bp2-deficient cells, overexpression of PPARγ and C-FOS rescued the function of osteoclasts through restoring reduced levels of NFATC1. On the other hand, the IGF2BP2/PPARγ/C-FOS axis facilitated the formation of osteoclasts by restoring the inhibited autophagy levels through the down-regulation of autophagy-related 16-like 2. Using an IGF2BP2 inhibitor, CWI1-2, hindered osteoclast formation and mitigated synovial inflammation, cartilage degeneration, and bone destruction in MIA-induced TMJOA mice. In summary, IGF2BP2 may be a novel regulator of osteoclastogenesis of TMJOA pathogenesis, and aggravates TMJOA pathology via stabilizing Pparg and Fos mRNA, which promotes NFATC1-mediated osteoclast signaling and autophagy-related 16-like 2-mediated autophagy.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 Drives Subchondral Bone Damage in Temporomandibular Joint Osteoarthritis through Peroxisome Proliferator-Activated Receptor γ/C-FOS-Regulated Dual Pathways: Nuclear Factor of Activated T Cells 1 Signaling and Autophagy-Related 16-Like 2-Mediated Autophagy.\",\"authors\":\"Ziyan Jiang, Jie Zhao, Youde Liang, Zhao Gao, Yanan Sun, Yaying Hu, Junchen Pan, Xing Long, Jiali Zhang\",\"doi\":\"10.1016/j.ajpath.2025.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Overactivated osteoclastogenesis leading to abnormal subchondral bone loss is the main feature of temporomandibular joint osteoarthritis (TMJOA) deterioration. The role of N6-methyladenosine in osteoclast-mediated subchondral bone loss in TMJOA remains unknown. Here, we found that an N6-methyladenosine reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was essential for mature osteoclast induction. In TMJ tissues of patients with TMJOA, the expression of IGF2BP2 was increased. Moreover, IGF2BP2 was augmented in subchondral bone of monosodium iodoacetate (MIA)-induced TMJOA mice. Igf2bp2 deficiency attenuated MIA-induced subchondral bone loss and suppressed osteoclast function. Mechanistically, IGF2BP2 directly stabilized Pparg and Fos mRNA to enhance the nuclear factor of activated T cells 1 (NFATC1) signaling, thereby inducing osteoclast maturation. Furthermore, the stabilized peroxisome proliferator-activated receptor γ (PPARγ) promoted the transcription of Fos, resulting in a further amplified signaling of NFATC1. In Igf2bp2-deficient cells, overexpression of PPARγ and C-FOS rescued the function of osteoclasts through restoring reduced levels of NFATC1. On the other hand, the IGF2BP2/PPARγ/C-FOS axis facilitated the formation of osteoclasts by restoring the inhibited autophagy levels through the down-regulation of autophagy-related 16-like 2. Using an IGF2BP2 inhibitor, CWI1-2, hindered osteoclast formation and mitigated synovial inflammation, cartilage degeneration, and bone destruction in MIA-induced TMJOA mice. In summary, IGF2BP2 may be a novel regulator of osteoclastogenesis of TMJOA pathogenesis, and aggravates TMJOA pathology via stabilizing Pparg and Fos mRNA, which promotes NFATC1-mediated osteoclast signaling and autophagy-related 16-like 2-mediated autophagy.</p>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajpath.2025.04.008\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2025.04.008","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 Drives Subchondral Bone Damage in Temporomandibular Joint Osteoarthritis through Peroxisome Proliferator-Activated Receptor γ/C-FOS-Regulated Dual Pathways: Nuclear Factor of Activated T Cells 1 Signaling and Autophagy-Related 16-Like 2-Mediated Autophagy.
Overactivated osteoclastogenesis leading to abnormal subchondral bone loss is the main feature of temporomandibular joint osteoarthritis (TMJOA) deterioration. The role of N6-methyladenosine in osteoclast-mediated subchondral bone loss in TMJOA remains unknown. Here, we found that an N6-methyladenosine reader insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) was essential for mature osteoclast induction. In TMJ tissues of patients with TMJOA, the expression of IGF2BP2 was increased. Moreover, IGF2BP2 was augmented in subchondral bone of monosodium iodoacetate (MIA)-induced TMJOA mice. Igf2bp2 deficiency attenuated MIA-induced subchondral bone loss and suppressed osteoclast function. Mechanistically, IGF2BP2 directly stabilized Pparg and Fos mRNA to enhance the nuclear factor of activated T cells 1 (NFATC1) signaling, thereby inducing osteoclast maturation. Furthermore, the stabilized peroxisome proliferator-activated receptor γ (PPARγ) promoted the transcription of Fos, resulting in a further amplified signaling of NFATC1. In Igf2bp2-deficient cells, overexpression of PPARγ and C-FOS rescued the function of osteoclasts through restoring reduced levels of NFATC1. On the other hand, the IGF2BP2/PPARγ/C-FOS axis facilitated the formation of osteoclasts by restoring the inhibited autophagy levels through the down-regulation of autophagy-related 16-like 2. Using an IGF2BP2 inhibitor, CWI1-2, hindered osteoclast formation and mitigated synovial inflammation, cartilage degeneration, and bone destruction in MIA-induced TMJOA mice. In summary, IGF2BP2 may be a novel regulator of osteoclastogenesis of TMJOA pathogenesis, and aggravates TMJOA pathology via stabilizing Pparg and Fos mRNA, which promotes NFATC1-mediated osteoclast signaling and autophagy-related 16-like 2-mediated autophagy.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.