Liu Chen, Xiaoping Wang, Yuchen Wang, Qingxin Yao, Yunyao Liu, Yongcheng Zhu, He Huang, Hedan Yang, Yin Yang, Yuan He, Lei Qiang
{"title":"SQSTM1/p62通过USP7降解协调皮肤老化","authors":"Liu Chen, Xiaoping Wang, Yuchen Wang, Qingxin Yao, Yunyao Liu, Yongcheng Zhu, He Huang, Hedan Yang, Yin Yang, Yuan He, Lei Qiang","doi":"10.1111/acel.70078","DOIUrl":null,"url":null,"abstract":"<p><p>Skin aging is a complex process driven by intrinsic genetic factors and extrinsic environmental influences. In this study, sequestosome1 (SQSTM1/p62) was identified as a key regulator of senescence, the senescence-associated secretory phenotype (SASP), and skin aging. Notably, p62 expression is reduced in senescent cells and aging skin of both humans and mice. The depletion of p62 in the epidermis was found to be positively associated with accelerated aging and the initiation of SASP. Mechanistically, p62 inhibits the accumulation of ubiquitin-specific protease 7 (USP7) during senescence induction by orchestrating its degradation through specific binding interactions. In particular, the Tyr-67 residue within the PB1 domain or Gln-418 within the UBA domain of p62 forms a hydrogen bond with Ala-993 in the Ubl5 domain of USP7. Mutations in either Tyr-67 or Gln-418 of p62, or Ala-993 of USP7, resulted in the induction of cellular senescence, highlighting the critical role of these molecular interactions in the regulation of aging processes.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70078"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SQSTM1/p62 Orchestrates Skin Aging via USP7 Degradation.\",\"authors\":\"Liu Chen, Xiaoping Wang, Yuchen Wang, Qingxin Yao, Yunyao Liu, Yongcheng Zhu, He Huang, Hedan Yang, Yin Yang, Yuan He, Lei Qiang\",\"doi\":\"10.1111/acel.70078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skin aging is a complex process driven by intrinsic genetic factors and extrinsic environmental influences. In this study, sequestosome1 (SQSTM1/p62) was identified as a key regulator of senescence, the senescence-associated secretory phenotype (SASP), and skin aging. Notably, p62 expression is reduced in senescent cells and aging skin of both humans and mice. The depletion of p62 in the epidermis was found to be positively associated with accelerated aging and the initiation of SASP. Mechanistically, p62 inhibits the accumulation of ubiquitin-specific protease 7 (USP7) during senescence induction by orchestrating its degradation through specific binding interactions. In particular, the Tyr-67 residue within the PB1 domain or Gln-418 within the UBA domain of p62 forms a hydrogen bond with Ala-993 in the Ubl5 domain of USP7. Mutations in either Tyr-67 or Gln-418 of p62, or Ala-993 of USP7, resulted in the induction of cellular senescence, highlighting the critical role of these molecular interactions in the regulation of aging processes.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e70078\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.70078\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70078","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
SQSTM1/p62 Orchestrates Skin Aging via USP7 Degradation.
Skin aging is a complex process driven by intrinsic genetic factors and extrinsic environmental influences. In this study, sequestosome1 (SQSTM1/p62) was identified as a key regulator of senescence, the senescence-associated secretory phenotype (SASP), and skin aging. Notably, p62 expression is reduced in senescent cells and aging skin of both humans and mice. The depletion of p62 in the epidermis was found to be positively associated with accelerated aging and the initiation of SASP. Mechanistically, p62 inhibits the accumulation of ubiquitin-specific protease 7 (USP7) during senescence induction by orchestrating its degradation through specific binding interactions. In particular, the Tyr-67 residue within the PB1 domain or Gln-418 within the UBA domain of p62 forms a hydrogen bond with Ala-993 in the Ubl5 domain of USP7. Mutations in either Tyr-67 or Gln-418 of p62, or Ala-993 of USP7, resulted in the induction of cellular senescence, highlighting the critical role of these molecular interactions in the regulation of aging processes.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.