{"title":"PathNetDRP:一种新的生物标志物发现框架,使用途径和蛋白质相互作用网络来预测免疫检查点抑制剂的反应。","authors":"Dohee Lee, Jaegyoon Ahn, Jonghwan Choi","doi":"10.1186/s12859-025-06125-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Predicting immune checkpoint inhibitor (ICI) response remains a significant challenge in cancer immunotherapy. Many existing approaches rely on differential gene expression analysis or predefined immune signatures, which may fail to capture the complex regulatory mechanisms underlying immune response. Network-based models attempt to integrate biological interactions, but they often lack a quantitative framework to assess how individual genes contribute within pathways, limiting the specificity and interpretability of biomarkers. Given these limitations, we developed PathNetDRP, a framework that integrates biological pathways, protein-protein interaction networks, and machine learning to identify functionally relevant biomarkers for ICI response prediction.</p><p><strong>Results: </strong>We introduce PathNetDRP, a novel biomarker discovery approach that applies the PageRank algorithm to prioritize ICI-associated genes, maps them to relevant biological pathways, and calculates PathNetGene scores to quantify their contribution to immune response. Unlike conventional methods that focus solely on gene expression differences, PathNetDRP systematically incorporates biological context to improve biomarker selection. Validation across multiple independent cancer cohorts showed that PathNetDRP achieved strong predictive performance, with cross-validation the area under the receiver operating characteristic curves increasing from 0.780 to 0.940. Interestingly, PathNetDRP did not merely improve predictive accuracy; it also provided insights into key immune-related pathways, reinforcing its potential for identifying clinically relevant biomarkers.</p><p><strong>Conclusion: </strong>The biomarkers identified by PathNetDRP demonstrated robust predictive performance across cross-validation and independent validation datasets, suggesting their potential utility in clinical applications. Furthermore, enrichment analysis highlighted key immune-related pathways, providing a deeper understanding of their role in ICI response regulation. While these findings underscore the promise of PathNetDRP, future work will explore the integration of additional predictive features, such as tumor mutational burden and microsatellite instability, to further refine its applicability.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"119"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051301/pdf/","citationCount":"0","resultStr":"{\"title\":\"PathNetDRP: a novel biomarker discovery framework using pathway and protein-protein interaction networks for immune checkpoint inhibitor response prediction.\",\"authors\":\"Dohee Lee, Jaegyoon Ahn, Jonghwan Choi\",\"doi\":\"10.1186/s12859-025-06125-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Predicting immune checkpoint inhibitor (ICI) response remains a significant challenge in cancer immunotherapy. Many existing approaches rely on differential gene expression analysis or predefined immune signatures, which may fail to capture the complex regulatory mechanisms underlying immune response. Network-based models attempt to integrate biological interactions, but they often lack a quantitative framework to assess how individual genes contribute within pathways, limiting the specificity and interpretability of biomarkers. Given these limitations, we developed PathNetDRP, a framework that integrates biological pathways, protein-protein interaction networks, and machine learning to identify functionally relevant biomarkers for ICI response prediction.</p><p><strong>Results: </strong>We introduce PathNetDRP, a novel biomarker discovery approach that applies the PageRank algorithm to prioritize ICI-associated genes, maps them to relevant biological pathways, and calculates PathNetGene scores to quantify their contribution to immune response. Unlike conventional methods that focus solely on gene expression differences, PathNetDRP systematically incorporates biological context to improve biomarker selection. Validation across multiple independent cancer cohorts showed that PathNetDRP achieved strong predictive performance, with cross-validation the area under the receiver operating characteristic curves increasing from 0.780 to 0.940. Interestingly, PathNetDRP did not merely improve predictive accuracy; it also provided insights into key immune-related pathways, reinforcing its potential for identifying clinically relevant biomarkers.</p><p><strong>Conclusion: </strong>The biomarkers identified by PathNetDRP demonstrated robust predictive performance across cross-validation and independent validation datasets, suggesting their potential utility in clinical applications. Furthermore, enrichment analysis highlighted key immune-related pathways, providing a deeper understanding of their role in ICI response regulation. While these findings underscore the promise of PathNetDRP, future work will explore the integration of additional predictive features, such as tumor mutational burden and microsatellite instability, to further refine its applicability.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"119\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12051301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06125-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06125-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PathNetDRP: a novel biomarker discovery framework using pathway and protein-protein interaction networks for immune checkpoint inhibitor response prediction.
Background: Predicting immune checkpoint inhibitor (ICI) response remains a significant challenge in cancer immunotherapy. Many existing approaches rely on differential gene expression analysis or predefined immune signatures, which may fail to capture the complex regulatory mechanisms underlying immune response. Network-based models attempt to integrate biological interactions, but they often lack a quantitative framework to assess how individual genes contribute within pathways, limiting the specificity and interpretability of biomarkers. Given these limitations, we developed PathNetDRP, a framework that integrates biological pathways, protein-protein interaction networks, and machine learning to identify functionally relevant biomarkers for ICI response prediction.
Results: We introduce PathNetDRP, a novel biomarker discovery approach that applies the PageRank algorithm to prioritize ICI-associated genes, maps them to relevant biological pathways, and calculates PathNetGene scores to quantify their contribution to immune response. Unlike conventional methods that focus solely on gene expression differences, PathNetDRP systematically incorporates biological context to improve biomarker selection. Validation across multiple independent cancer cohorts showed that PathNetDRP achieved strong predictive performance, with cross-validation the area under the receiver operating characteristic curves increasing from 0.780 to 0.940. Interestingly, PathNetDRP did not merely improve predictive accuracy; it also provided insights into key immune-related pathways, reinforcing its potential for identifying clinically relevant biomarkers.
Conclusion: The biomarkers identified by PathNetDRP demonstrated robust predictive performance across cross-validation and independent validation datasets, suggesting their potential utility in clinical applications. Furthermore, enrichment analysis highlighted key immune-related pathways, providing a deeper understanding of their role in ICI response regulation. While these findings underscore the promise of PathNetDRP, future work will explore the integration of additional predictive features, such as tumor mutational burden and microsatellite instability, to further refine its applicability.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.