Caitlin V Lewis, Thi-Tina N Nguyen, Timothy E Porfilio, Samuel D Burciaga, Janelle N Posey, Mariah Jordan, Daniel Colon Hidalgo, Kurt R Stenmark, Claudia Mickael, Christina Sul, Rebecca E Oberley-Deegan, Cassidy Delaney, Eva S Nozik
{"title":"血管EC-SOD限制缺氧条件下间质巨噬细胞的积聚、促炎纤维化重编程和透明质酸结合。","authors":"Caitlin V Lewis, Thi-Tina N Nguyen, Timothy E Porfilio, Samuel D Burciaga, Janelle N Posey, Mariah Jordan, Daniel Colon Hidalgo, Kurt R Stenmark, Claudia Mickael, Christina Sul, Rebecca E Oberley-Deegan, Cassidy Delaney, Eva S Nozik","doi":"10.1152/ajplung.00399.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulated redox signaling contributes to pulmonary hypertension (PH) and vascular depletion of the redox enzyme extracellular superoxide dismutase (EC-SOD) from smooth muscle cells [EC-SOD SMC knockout (KO)] worsens chronic hypoxic PH. Given the important role of macrophages in PH, this study aimed to determine if interstitial macrophages (IMs) and their interactions with hyaluronan (HA), a component of extracellular matrix (ECM), are modulated by vascular EC-SOD. Floxed wild-type, EC-SOD SMC KO, and SOD mimetic- or vehicle-treated mice were exposed to hypobaric hypoxia [∼10% fraction of inspired oxygen ([Formula: see text])], for 4, 14, or 21 days. Using flow cytometry, we demonstrated that the transient increase in IMs at <i>day 4</i> was exacerbated in EC-SOD SMC KO mice and prevented with SOD mimetic pretreatment. Highlighting the importance of targeting vascular oxidative stress in the early response to hypoxia, pretreatment with a single dose of EC-SOD mimetic decreased right ventricular systolic pressure, right ventricular hypertrophy, and small vessel muscularization at <i>day 21</i>. To assess IM phenotypic reprogramming in hypoxia, RNA-seq was performed on flow-sorted IMs revealing baseline proinflammatory activation and enhanced activation of vascular and ECM remodeling pathways in response to hypoxia in EC-SOD SMC KO IMs compared with controls. To further investigate the ECM remodeling response, we quantified IMs expressing the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), and IM-hyaluronan binding. Lyve1<sup>+</sup> IMs and Lyve1<sup>+</sup> HA<sup>+</sup> IMs were increased in response to hypoxia in EC-SOD SMC KO mice and accumulated in the perivascular space of the lung. In conclusion, vascular EC-SOD limits IM accumulation and proinflammatory profibrotic IM signaling, including perivascular accumulation of Lyve1<sup>+</sup> IMs and their binding to hyaluronan.<b>NEW & NOTEWORTHY</b> Expression of the redox enzyme EC-SOD limits PH severity. Using vascular-selective EC-SOD depletion and SOD mimetic treatment in chronic hypoxic PH, we demonstrated that EC-SOD limits the hypoxia-induced accumulation of IMs. IMs from mice with low vascular EC-SOD were proinflammatory at baseline and enhanced ECM remodeling pathway activation in response to hypoxia. We identified Lyve1<sup>+</sup> IMs as a perivascular, ECM-interacting subset that accumulate in hypoxia and could contribute to vascular remodeling in PH.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L885-L900"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vascular EC-SOD limits the accumulation, proinflammatory profibrotic reprogramming, and hyaluronan binding of interstitial macrophages in hypoxia.\",\"authors\":\"Caitlin V Lewis, Thi-Tina N Nguyen, Timothy E Porfilio, Samuel D Burciaga, Janelle N Posey, Mariah Jordan, Daniel Colon Hidalgo, Kurt R Stenmark, Claudia Mickael, Christina Sul, Rebecca E Oberley-Deegan, Cassidy Delaney, Eva S Nozik\",\"doi\":\"10.1152/ajplung.00399.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dysregulated redox signaling contributes to pulmonary hypertension (PH) and vascular depletion of the redox enzyme extracellular superoxide dismutase (EC-SOD) from smooth muscle cells [EC-SOD SMC knockout (KO)] worsens chronic hypoxic PH. Given the important role of macrophages in PH, this study aimed to determine if interstitial macrophages (IMs) and their interactions with hyaluronan (HA), a component of extracellular matrix (ECM), are modulated by vascular EC-SOD. Floxed wild-type, EC-SOD SMC KO, and SOD mimetic- or vehicle-treated mice were exposed to hypobaric hypoxia [∼10% fraction of inspired oxygen ([Formula: see text])], for 4, 14, or 21 days. Using flow cytometry, we demonstrated that the transient increase in IMs at <i>day 4</i> was exacerbated in EC-SOD SMC KO mice and prevented with SOD mimetic pretreatment. Highlighting the importance of targeting vascular oxidative stress in the early response to hypoxia, pretreatment with a single dose of EC-SOD mimetic decreased right ventricular systolic pressure, right ventricular hypertrophy, and small vessel muscularization at <i>day 21</i>. To assess IM phenotypic reprogramming in hypoxia, RNA-seq was performed on flow-sorted IMs revealing baseline proinflammatory activation and enhanced activation of vascular and ECM remodeling pathways in response to hypoxia in EC-SOD SMC KO IMs compared with controls. To further investigate the ECM remodeling response, we quantified IMs expressing the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), and IM-hyaluronan binding. Lyve1<sup>+</sup> IMs and Lyve1<sup>+</sup> HA<sup>+</sup> IMs were increased in response to hypoxia in EC-SOD SMC KO mice and accumulated in the perivascular space of the lung. In conclusion, vascular EC-SOD limits IM accumulation and proinflammatory profibrotic IM signaling, including perivascular accumulation of Lyve1<sup>+</sup> IMs and their binding to hyaluronan.<b>NEW & NOTEWORTHY</b> Expression of the redox enzyme EC-SOD limits PH severity. Using vascular-selective EC-SOD depletion and SOD mimetic treatment in chronic hypoxic PH, we demonstrated that EC-SOD limits the hypoxia-induced accumulation of IMs. IMs from mice with low vascular EC-SOD were proinflammatory at baseline and enhanced ECM remodeling pathway activation in response to hypoxia. We identified Lyve1<sup>+</sup> IMs as a perivascular, ECM-interacting subset that accumulate in hypoxia and could contribute to vascular remodeling in PH.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"L885-L900\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00399.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00399.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Vascular EC-SOD limits the accumulation, proinflammatory profibrotic reprogramming, and hyaluronan binding of interstitial macrophages in hypoxia.
Dysregulated redox signaling contributes to pulmonary hypertension (PH) and vascular depletion of the redox enzyme extracellular superoxide dismutase (EC-SOD) from smooth muscle cells [EC-SOD SMC knockout (KO)] worsens chronic hypoxic PH. Given the important role of macrophages in PH, this study aimed to determine if interstitial macrophages (IMs) and their interactions with hyaluronan (HA), a component of extracellular matrix (ECM), are modulated by vascular EC-SOD. Floxed wild-type, EC-SOD SMC KO, and SOD mimetic- or vehicle-treated mice were exposed to hypobaric hypoxia [∼10% fraction of inspired oxygen ([Formula: see text])], for 4, 14, or 21 days. Using flow cytometry, we demonstrated that the transient increase in IMs at day 4 was exacerbated in EC-SOD SMC KO mice and prevented with SOD mimetic pretreatment. Highlighting the importance of targeting vascular oxidative stress in the early response to hypoxia, pretreatment with a single dose of EC-SOD mimetic decreased right ventricular systolic pressure, right ventricular hypertrophy, and small vessel muscularization at day 21. To assess IM phenotypic reprogramming in hypoxia, RNA-seq was performed on flow-sorted IMs revealing baseline proinflammatory activation and enhanced activation of vascular and ECM remodeling pathways in response to hypoxia in EC-SOD SMC KO IMs compared with controls. To further investigate the ECM remodeling response, we quantified IMs expressing the lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), and IM-hyaluronan binding. Lyve1+ IMs and Lyve1+ HA+ IMs were increased in response to hypoxia in EC-SOD SMC KO mice and accumulated in the perivascular space of the lung. In conclusion, vascular EC-SOD limits IM accumulation and proinflammatory profibrotic IM signaling, including perivascular accumulation of Lyve1+ IMs and their binding to hyaluronan.NEW & NOTEWORTHY Expression of the redox enzyme EC-SOD limits PH severity. Using vascular-selective EC-SOD depletion and SOD mimetic treatment in chronic hypoxic PH, we demonstrated that EC-SOD limits the hypoxia-induced accumulation of IMs. IMs from mice with low vascular EC-SOD were proinflammatory at baseline and enhanced ECM remodeling pathway activation in response to hypoxia. We identified Lyve1+ IMs as a perivascular, ECM-interacting subset that accumulate in hypoxia and could contribute to vascular remodeling in PH.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.