[双硫仑通过抑制tak1介导的PANoptosis减轻心脏肥厚性损伤]。

Q3 Medicine
Wei-Dong Li, Xuan-Yang Shen, Xiao-Lu Jiang, Hong-Fu Wen, Yuan Shen, Mei-Qi Zhang, Wen-Tao Tan
{"title":"[双硫仑通过抑制tak1介导的PANoptosis减轻心脏肥厚性损伤]。","authors":"Wei-Dong Li, Xuan-Yang Shen, Xiao-Lu Jiang, Hong-Fu Wen, Yuan Shen, Mei-Qi Zhang, Wen-Tao Tan","doi":"10.13294/j.aps.2025.0037","DOIUrl":null,"url":null,"abstract":"<p><p>The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an <i>in vitro</i> model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"77 2","pages":"222-230"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Disulfiram alleviates cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis].\",\"authors\":\"Wei-Dong Li, Xuan-Yang Shen, Xiao-Lu Jiang, Hong-Fu Wen, Yuan Shen, Mei-Qi Zhang, Wen-Tao Tan\",\"doi\":\"10.13294/j.aps.2025.0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an <i>in vitro</i> model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.</p>\",\"PeriodicalId\":7134,\"journal\":{\"name\":\"生理学报\",\"volume\":\"77 2\",\"pages\":\"222-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13294/j.aps.2025.0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13294/j.aps.2025.0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨双硫仑(DSF)对心脏肥厚性损伤的影响及其潜在机制,重点研究转化生长因子-β-活化激酶1 (TAK1)介导的泛细胞凋亡(PANoptosis)的作用。血管紧张素II (Ang II, 1µmol/L)处理H9C2心肌细胞,建立心肌肥大的体外模型。DSF(40µmol/L)单独或与TAK1抑制剂5z-7-氧玉米烯醇(5z-7, 0.1µmol/L)联合用于心肌细胞肥厚性损伤模型。我们使用碘化丙啶(PI)染色评估细胞损伤,使用CCK8测定细胞活力,通过ELISA定量细胞培养基中的炎症因子水平,使用免疫沉淀检测TAK1和RIPK1结合率,并使用Western blot分析TAK1介导PANoptosis通路关键蛋白的蛋白表达水平。另外,用Phalloidin染色法测定心肌细胞表面积。结果显示,Ang II显著降低H9C2心肌细胞的细胞活力和TAK1与RIPK1的结合率,显著增加H9C2心肌细胞表面积、PI染色阳性率、细胞培养基中炎症因子[白细胞介素-1β (IL-1β)、IL-18、肿瘤坏死因子α (TNF-α)]水平和p-TAK1/TAK1比值,显著上调PANoptosis通路关键蛋白[焦死相关蛋白NLRP3、Caspase-1 (p20),和GSDMD-N (p30),凋亡相关蛋白Caspase-3 (p17), Caspase-7 (p20), Caspase-8 (p18),以及坏死相关蛋白p-MLKL, RIPK1, RIPK3]。DSF显著逆转了Ang II诱导的上述变化。5z-7和外源性IL-1β都削弱了DSF的这些心脏保护作用。这些结果提示DSF可能通过抑制tak1介导的PANoptosis来减轻心脏肥厚性损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Disulfiram alleviates cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis].

The study aims to examine the effects and potential mechanisms of disulfiram (DSF) on cardiac hypertrophic injury, focusing on the role of transforming growth factor-β-activated kinase 1 (TAK1)-mediated pan-apoptosis (PANoptosis). H9C2 cardiomyocytes were treated with angiotensin II (Ang II, 1 µmol/L) to establish an in vitro model of myocardial hypertrophy. DSF (40 µmol/L) was used to treat cardiomyocyte hypertrophic injury models, either along or in combination with the TAK1 inhibitor, 5z-7-oxozeaenol (5z-7, 0.1 µmol/L). We assessed cell damage using propidium iodide (PI) staining, measured cell viability with CCK8 assay, quantified inflammatory factor levels in cell culture media via ELISA, detected TAK1 and RIPK1 binding rates using immunoprecipitation, and analyzed the protein expression levels of key proteins in the TAK1-mediated PANoptosis pathway using Western blot. In addition, the surface area of cardiomyocytes was measured with Phalloidin staining. The results showed that Ang II significantly reduced the cellular viability of H9C2 cardiomyocytes and the binding rate of TAK1 and RIPK1, significantly increased the surface area of H9C2 cardiomyocytes, PI staining positive rate, levels of inflammatory factors [interleukin-1β (IL-1β), IL-18, and tumor necrosis factor α (TNF-α)] in cell culture media and p-TAK1/TAK1 ratio, and significantly up-regulated key proteins in the PANoptosis pathway [pyroptosis-related proteins NLRP3, Caspase-1 (p20), and GSDMD-N (p30), apoptosis-related proteins Caspase-3 (p17), Caspase-7 (p20), and Caspase-8 (p18), as well as necroptosis-related proteins p-MLKL, RIPK1, and RIPK3]. DSF significantly reversed the above changes induced by Ang II. Both 5z-7 and exogenous IL-1β weakened these cardioprotective effects of DSF. These results suggest that DSF may alleviate cardiac hypertrophic injury by inhibiting TAK1-mediated PANoptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生理学报
生理学报 Medicine-Medicine (all)
CiteScore
1.20
自引率
0.00%
发文量
4820
期刊介绍: Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信