{"title":"下一代可转化纳米药物:革命性的癌症药物输送和治疗。","authors":"Swapnil Shinde, Saurabh Shah, Paras Famta, Suraj Wagh, Giriraj Pandey, Abhishek Sharma, Ganesh Vambhurkar, Akshita Jain, Saurabh Srivastava","doi":"10.1021/acs.molpharmaceut.4c01495","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomedicine has significantly advanced the treatment of various cancer phenotypes, addressing numerous challenges associated with conventional therapies. Researchers have extensively investigated the physicochemical properties of nanocarriers, such as charge, morphology, and surface chemistry, to optimize drug delivery systems. In the context of transformable nanomedicine, these properties are particularly critical for overcoming existing limitations, including suboptimal blood circulation times, sequestration by the reticuloendothelial system and mononuclear phagocyte system, and inefficient targeting of the tumor microenvironment (TME). Alterations in nanocarrier geometry, surface charge, and hydrophilicity have shown potential in mitigating these barriers, offering improved therapeutic outcomes and enhanced biomedical applications. This review explores controlled modulation of these properties in the context of anticancer therapy, offering an in-depth exploration of transformable strategies activated by both internal and external stimuli. We analyze the implications of these tunable characteristics on pharmacokinetics, biodistribution, and targeted delivery to the TME. Additionally, we address the current challenges in the clinical translation of these advanced nanocarriers and propose strategies to overcome these obstacles to enhance the clinical feasibility of nanomedicine-based cancer therapies.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"2783-2806"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-Generation Transformable Nanomedicines: Revolutionizing Cancer Drug Delivery and Theranostics.\",\"authors\":\"Swapnil Shinde, Saurabh Shah, Paras Famta, Suraj Wagh, Giriraj Pandey, Abhishek Sharma, Ganesh Vambhurkar, Akshita Jain, Saurabh Srivastava\",\"doi\":\"10.1021/acs.molpharmaceut.4c01495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanomedicine has significantly advanced the treatment of various cancer phenotypes, addressing numerous challenges associated with conventional therapies. Researchers have extensively investigated the physicochemical properties of nanocarriers, such as charge, morphology, and surface chemistry, to optimize drug delivery systems. In the context of transformable nanomedicine, these properties are particularly critical for overcoming existing limitations, including suboptimal blood circulation times, sequestration by the reticuloendothelial system and mononuclear phagocyte system, and inefficient targeting of the tumor microenvironment (TME). Alterations in nanocarrier geometry, surface charge, and hydrophilicity have shown potential in mitigating these barriers, offering improved therapeutic outcomes and enhanced biomedical applications. This review explores controlled modulation of these properties in the context of anticancer therapy, offering an in-depth exploration of transformable strategies activated by both internal and external stimuli. We analyze the implications of these tunable characteristics on pharmacokinetics, biodistribution, and targeted delivery to the TME. Additionally, we address the current challenges in the clinical translation of these advanced nanocarriers and propose strategies to overcome these obstacles to enhance the clinical feasibility of nanomedicine-based cancer therapies.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"2783-2806\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c01495\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01495","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Next-Generation Transformable Nanomedicines: Revolutionizing Cancer Drug Delivery and Theranostics.
Nanomedicine has significantly advanced the treatment of various cancer phenotypes, addressing numerous challenges associated with conventional therapies. Researchers have extensively investigated the physicochemical properties of nanocarriers, such as charge, morphology, and surface chemistry, to optimize drug delivery systems. In the context of transformable nanomedicine, these properties are particularly critical for overcoming existing limitations, including suboptimal blood circulation times, sequestration by the reticuloendothelial system and mononuclear phagocyte system, and inefficient targeting of the tumor microenvironment (TME). Alterations in nanocarrier geometry, surface charge, and hydrophilicity have shown potential in mitigating these barriers, offering improved therapeutic outcomes and enhanced biomedical applications. This review explores controlled modulation of these properties in the context of anticancer therapy, offering an in-depth exploration of transformable strategies activated by both internal and external stimuli. We analyze the implications of these tunable characteristics on pharmacokinetics, biodistribution, and targeted delivery to the TME. Additionally, we address the current challenges in the clinical translation of these advanced nanocarriers and propose strategies to overcome these obstacles to enhance the clinical feasibility of nanomedicine-based cancer therapies.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.